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Current Energy Sector Systems and Services
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Fossil fuels production, transportation
and refining

Power generation,
transmission/distribution

Primary metals production and refining

Minerals production and processing
soda, phosphate
precious, rare earth

Foresting / wood products milling and
pulp production

Feedstock chemicals manufacturing
Glass making

Cement and masonry production
Biomass refuse and MSW management
Water production and treatment

Ammonia & fertilizers production
Agriculture and ranching
Food processing

Chemicals utilization:

- polymers, plastics, resins,
composites

- Natural and synthetic textiles

- synthetic rubber

Automotive manufacturing
Steel rolling, casting, and milling
Paper and paperboard production

Electronics fabrication and
assembly

Potable water purification
Biodiesel and ethanol fuels
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Nourishment

Water

Clothing apparel
Shelter and furniture
Transportation
Infrastructure
Lighting

Comfort (heating and
air conditioning)

Communications,
computing & data
storage

Medical supplies &
pharmaceuticals

Entertainment
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o d (28.9 percent of 2017 greenhouse gas emissions) — The
Total U.S. Greenhouse Gas Emissions transportation sector generates the largest share of greenhouse gas emissions.
by Economic Sector in 2017 Greenhouse gas emissions from transportation primarily come from burning fossil
' fuel for our cars, trucks, ships, trains, and planes. Over 90 percent of the fuel used
Agriculture for transportation is petroleum based, which includes primarily gasoline and
9%—\ diesel.
d (27.5 percent of 2017 greenhouse gas emissions) —

Commercial &

Residential Electricity production generates the second largest share of greenhouse gas

12% '\ emissions. Approximately 62.9 percent of our electricity comes from burning fossil
. fuels, mostly coal and natural gas. 25% of retail electricity is sent to industry.
Transportation a (22.2 percent of 2017 greenhouse gas emissions) — Greenhouse gas
29% emissions from industry primarily come from burning fossil fuels for energy, as

well as greenhouse gas emissions from certain chemical reactions necessary to
produce goods from raw materials.

d (11.6 percent of 2017 greenhouse gas emissions)
— Greenhouse gas emissions from businesses and homes arise primarily from
fossil fuels burned for heat, the use of certain products that contain greenhouse
gases, and the handling of waste.

d (9.0 percent of 2017 greenhouse gas emissions) — Greenhouse gas
emissions from agriculture come from livestock such as cows, agricultural soils,
and rice production.

a (offset of 11.1 percent of 2017 greenhouse gas
emissions) — Land areas can act as a sink (absorbing CO, from the atmosphere)
or a source of greenhouse gas emissions. In the United States, since 1990,
managed forests and other lands have absorbed more CO, from the atmosphere
than they emit. 4



https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#transportation
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#t1fn2
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#electricity
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#industry
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#commercial-and-residential
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#agriculture
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#land-use-and-forestry

Estimated U.S. Energy Consumption in 2018: 101.2 Quads | Lawrence Livermore
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Nuclear-powered
cars and trucks

o Qwp

(" Pressurized Light )
Water Reactor

Steam Bypass

C,C"}@'—L

/

Electricity Yy,

Electric Vehicles N

Hydrogen Fuel Cell Vehicles

Biofuels (i.e. ethanol)
» low carbon fertilizers

Synthetic Hydrocarbons
» diesel and gasoline
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Nuclear energy directed
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to industry

A.
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Directed reduced 1ron and
electric arc furnaces
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Toledo Area Energy Hub

Clean Transportation

(J Fundamental
R&D with
University

d Technology
development
and acceleration

(] DOE Cost-Share Central
. Hydrogen
Demonstrations Plant

Evaluation of Non-electrical markets
for a Light-Water in the Midwest
INL, NREL PNNL, ANL, SNL

Distributed Water
Electrolysis Plants
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Electrolysis
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Regional
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CO,
Pipeline

Central Clean
Chemical &
Fuels Synthesis

Biodigester
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Ammonia-Based
Fertilizers Plant

Refiery /
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Plant

Direct Reduced
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Mini Steel Plant
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3. Large commercial markets that are relative inelastic

» Transportation sector inertia continues remains strong

» Fossil fuels costs are presently near a minimum threshold
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Distribution of 98 operating nuclear power plants in
the U.S.

» 17 Reactors in the zone of ethanol plants

» 3-4 MMT of H, hydrogen production potential

S. D. Supekar, S. J. Skerlos, Environmental
Science & Technology. 48, 1461514623 (2014).
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d 44 MMT of CO, from ethanol plants
» 4.7 Billion gallons for F-T Fuels
» 6 MMT of H, potential demand for
fuels synthesis
» 0.5 MMT of H, for fertilizer for crops
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Steel Making Routes\

Crude steel
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Graphic Source: World Steel Association Fact Sheet: Energy Use in the Steel Industry
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Steel Making Options CO, Emissions Comparison

Steel Making CO2 Emissions

Average Grid- 850 gCO2/kWh

Clean Electricity- 40 gCO2/kWh LOW'em|SS|OnS
electricity and

hydrogen from
electrolysis yield
50-90% reduction
in CO, emissions
for finished steel
I . mi products
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ELEC. ELEC. ELEC. ELEC. ELEC.

BF/BOF COAL DRI/EAF NG DRI/EAF H2 DRI/EAF SCRAP/EAF 1



INL/EXT-19-56936

Light Water Reactor Sustainability Program

Technoeconomic Analysis on an
Electrochemical Nonoxidative
Deprotonation Process for Ethylene
Production from Ethane

T r"H"1*ﬁ_N fug |

.

Converting Natural Gas Condensates into Polymers w

P—
December 2020

U.S. Department of Energy
Office of Nuclear Energy

INL/EXT-19-56936
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aLight Water Reactor

Steam @ 275°C

s Cthylene »
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ENDP future Steam Cracking

M Separation B Compression

Low-carbon electricity

Electrochemical

MS$570

50 — 70 % lower
capital cost

M$345

ENDP current ENDP future

Steam Cracker

B Major Equipment  ® Bulk Materials  ® Indirect Cost
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Low-carbon heat & electricity

Steam Cracker
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B Thermal ™ Electrical ™ Cracking
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M$520

I I :

ENDP current

ENDP future Steam cracking

W Butane (C4+)

Higher
Revenue
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* Non-Spinning Reserve
» Operating reserve (OR) is stand-by

power or demand reduction that can
be called on with short notice to
deal with an unexpected mismatch
between generation and load

Operating reserve requirements are
defied by reliability standards
established by the North American
Eclectic Reliability Council (NERC)
— typically a contingency to cover
the loss of one and a half of the
largest generator.

Non Spinning Reserve is a class of
operating reserve that dispatchable
generators and dispatachable loads
can provide a 10-minute non-
synchronized reserve

\Eﬂb Idoho National Laboratory
R Generation

S

Thermal Electrical
Energy
Dispatch

~~
Light Water Power

Energy
Dispatch

YK

Non-Electrical
Energy Products

\ 4
A

Full Load

Non-Spinning
Reserve lllustration

Min Load

e
Ny -

Dispatch One Hour Reserve

* How a Light Water Reactors Provides this Service

» The industry user load (e.g. electrolyzer, desalination plant, etc.) is
operating at full capacity and within 10 minutes notification it drops its
load to its minimum operating point for some period (dispatchable load)

» This service has the added benefit during off-peak hours of reducing the
amount of gas-fired generation on standby that is required
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Physics & Modeling
Proof of Principle
Experimental Studies
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Patent Applications
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¢ FrontEnd Engineering and Design
& Large, Pilot Demonstration
Integrated System Testing

Preliminary Design

Detailed Modeling & Simulation é
Pilot Plant Testing
System Integration
Monitoring & Controls Development

Commerecial
Demonstration TRL6-7

é

Pilot-Scale
Testing & TRL4-5
Demonstrations

[
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Energy Systems for the Future

Goal: Energy utilization, generator profitability, and grid reliability and

resilience through novel systems integration and process design

Fossil

Large
Light Water

Reactors Electricity

Small
Modular =
Reactors

Micro |
Reactors

Advanced

Reactors New Chemical %

Processes “UiH]

Clean Water
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Large Industry Energy Use Breakdown (2010 Data)
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http://www.osti.gov/scitech/biblio/1334495-generation-use-thermal-energy-industrial-sector-opportunities-reduce-its-carbon-emissions
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Evolution of the Electrical Grid

Coordinated Energy Systems

» Holistic Integration of the

energy system
* Involve electrical, thermal, and
chemical networks

« Utilize energy storage on
Var|0us ScaleS M%C:;Z;-"ﬂ Nuclear Reactor EV
 Provide reliable, sustainable, Compressed O Charging
. . —_—— - N w O
low-emissions, most affordable Ciquefiod Gas | 23
Thermal 3 2
energy % Energy }
(:eotherm&al ,\/\/\/\/\/\J
Tightly Coupled Hybrid Systems
_ =W /" Gas Turbine C.C ™\
* Involve thermal, electrical, and « {51
process intermediates Somge] [ZR) 1|8 08 K g/
Integ ratlon Energy GiBgat;watt % 2 § i Substation 3 m
. i} St e
More cqmplex than co | b E R D Dynamic _
generation, poly-generation, or ] — b - Active
. — = ntegration Customers
combined heat and power With Industry
« May exploit the economics of Seam HotGas | | fg @ @ Q
. H2 & 02 —
coordlnatgd energy s;_/stems Syngas / Heavy Oil U Cramical ana Syt
« May provide grid services Plants - o

through demand response
(import or export) o
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What assumptions have to be true for this proposition to be viable?

1. Must have a low cost of CNnergy Light Water Reactor Sustainability Program
» Assured supply
» Low price volatility Evaluation of Non-electric Market
2. Cost of electrolysis technology is reduced by: S i L

the Midwest

» High technology readiness
» High volume, low-cost manufacturing supply chain
» Reducing commercial risk through demonstration projects

3. Large commercial markets that are relative melastic
» Transportation sector continues strong
» Fossil fuels costs are presently near a minimum threshold

4. Policy and regulations provide an initial boost P—
» Regulations that incentivize air pollutant emissions control e
» Grid market rules adapt to optimize integrated energy systems e
» Private-public partnerships help kickstart projects (e.g., cost-shared
demonstrations, loan guarantees, tax incentives)

INL/EXT-19-55090

20
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Existing nuclear reactors compete with
natural gas when producing steam (and
heat)

Nuclear power plant costs are coming
down as owners look to reduce costs
through plant modernization and other
measures

Nuclear fuel costs will remain flat for
decades to come

Spent nuclear fuel is relatively small and
can be held in dry storage until a
permanent repository is available

Cost of Steam (/1000 |b-steam)

MNatural Gas vs LWR Steam Production Costs
5.2 MPa, 293 C (750 psia, 560 F)

NG Steamwith nonCO2 tax — NG Steam with 525/tonne 002 tax

e By sting LWH: Est. Lower Cost of Steam BExizting LMYR: Est. U pper Cost of Steam

25.00
; 2050
Ave. 5. Cost of Industrial NG i [56.85)
[5/MM Btu) ,
(56100
20.00
i
15.00
10.00
T S A T T T S T D T I D S T
5.00
!'hli S D T D T T T S S T D T S D T D D S
0.00 -l : T
1 2 3 4 5 & 7 B 9 10 11

Natural Gas Cost ($/MMEtu)
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4. Policy and regulations provide an initial boost

$/MWh

150

130

110

90

70

50

30

»
»
»

Regulations that incentivize air pollutant emissions control

Grid market rules adapt to optimize integrated energy systems
Private-public partnerships help kickstart projects (e.g., cost-shared
demonstrations, loan guarantees, tax incentives)

v

=
Lt

Sell electrical
power at market
clearing price

A

Sell hydrogen produced

using electricity and heat
from nuclear power plant Approach for calculating H, selling price from HTE coupled

with NPP

+ Select a range of cut-off prices » NPP operating cost (i.e.,
$40, $50, $60/MWh, etc.). For each cut off price:

+ Time above cut-off price (yellow region) determines
quantity of electricity “byproduct” sold at cut-off (bid) price

+ Time below cut-off price (green region) determines
capacity factor for H. production

5% offline (scheduled maintenance, etc.)
Cut-off price

Q

=

H, production using electricity costed

—

e

D 1000

2000 3000 4000 5000 6000 7000 8000

Cut-off ime (number of hours
per year that clearing price Price duration curve compiled from /
exceeds bid price) locational marginal price (LMP) data

Hours

$1.66

$1.64

$1.62

$1.60

H, selling price ($/kg)

©“ T
92 il
m [
o @

$1.54

$1.52

20 40 60 80 100 120 140
bid price ($/MWh)

—8— 3400/kWe CAPEX & $30/MWhe OPEX

Minimum hydrogen production costs
versus cut-off selling price for
producing/selling electricity

16
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Small-scale (24 tpd H,) local hydrogen production

— - —SMR, high NG price  ($8.0/MMBtu) - -— LTE, $129/kWe

—— SMR, baseline NG price ($5.4/MMBtu) —e— LTE, 586/kWe

— - - -SMR, low NG price (54.2/MMBtu) ---=-. LTE, $60/kWe 4.00
4.00 _4
e 7279
375 ‘ “nth-of-a-kind”
: ot 3.67
3.50 A L LTE PEM
3.25 it outperforms
- 45.7, 3.45 .
E: son SMR with LWR
E’ 2.75 . _4_ ......................... — cost of
ER electricity
<$35/MWe-hr
2.25 .
;:14
2.00
1.75 ‘ : :
15 20 25 30 35 40 45 50 55

Electricity price (5/MWh-e)
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Cost of Hydrogen (2019 USS/kg)

~500 tonne per day plant
Oxygen sales used to discount cost of H,

Source: R. Boardman, INL; Evaluation of non-electric market options for a
light-water reactor in the Midwest (Light Water Reactor Sustainability Market
Study, March 2019); INL/EXT-19-55090

24
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Grid Integration
» Electrical Coupling
= Controls Coupling e BEos =
= Thermal Coupling S
= Tightly coupled grids B\ _« :

Low Temperature Electrolysis Dynamic High Temperature Electrolysis

Grid Stabilization Demonstration

Grid & Thermal Integration Activities

Power (kW)
o
3

NREL Testing Station L R S R
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World Apparent Steel Market

Steel Consumption Projections through 2050

2000

&
&

Steel consumption, Mt/yr
E
3

WESGI Eljrope

, North America

Source: Bas. J. van Ruijven, et al., Long-term model-based projections of energy use and CO, emissions
from the global steel and cement industries, Resources, Conservation, and Recycling, 112 (2016) 15-36

1571 1976 1981 1986 1991 195 2001 2006 2011 2016 2021 2026 2031 2036 2041 046

World Steel Association’s
Short Range Outlook, 2017
Finished Steel Production Breakdown

- Amount | % change
Region (million since
tonnes) 2015
667  -0.80
COR ¢ 10
a6
160 42
32 67
519 25
1385 3.1
0 35

These sources indicate steel use

will increase ~1% annually |
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