The University Of Toledo

New Graduate Course Proposal

* denotes required fields

1. College*: College of Engineering
Department*: Mechanical Engineering

2. Contact Person*: Mohammad Elahinia
Phone: 530-8224 (xxx-xxxx) Email: mohammad.elahinia@utoledo.edu

3. Alpha/Numeric Code (Subject area - number)*: MIME 8910

4. Proposed title*: Engineering Analysis of Smalls
Proposed effective term*: 2016/2017 (e.g. 2011/2012 for 2011 Fall)

5. Is the course cross-listed with another academic unit? ○ Yes ○ No
Approval of other academic unit (signature and title)
Is the course offered at more than one level? ○ Yes ○ No
If yes, an undergraduate course proposal form must also be submitted. If the undergraduate course is new, complete the New Undergraduate Course Proposal; if the undergraduate course is existing, submit an Undergraduate Course Modification Proposal.

6. Credit hours*: Fixed: 3 or Variable: to

7. Delivery Mode: Primary* Secondary Tertiary
 a. Activity Type*: Lecture --SelectType-- --SelectType--
 b. Minimum Credit Hours*: 3
 Maximum Credit Hours*: 3
 c. Weekly Contact Hours*: 3

8. Terms offered: ○ Fall ○ Spring ○ Summer
Years offered: ○ Every Year ○ Alternate Years

9. Are students permitted to register for more than one section during a term? ○ No ○ Yes
May the courses be repeated for credit? ○ No ○ Yes Maximum Hours

 ○ Satisfactory/Unsatisfactory (A-C, less than C)
 ○ Grade Only (A-F, WP/WF, PR, I)
 ○ Audit Only
 ○ No Grade

11. Prerequisites (must be taken before): i.e. C or higher in (BIOE 4500 or BIOE 5500) and C or higher in MATH 4200
 PIN (Permission From Instructor) PDP (Permission From Department)

Co-requisites (must be taken together):

12. Catalog Description* (75 words Maximum)

Smart material systems are becoming increasingly important in aerospace and automotive industries. Therefore, it is important to expose students to this area. Graduate Engineering students who are interested in learning about smart material systems will benefit from this course. Prerequisites are undergraduate courses in differential equations, dynamics, and vibration.

13. Attach a syllabus and an electronic copy of a complete outline of the major topics covered. Click here for template.

<table>
<thead>
<tr>
<th>File Type</th>
<th>View File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllabus</td>
<td>View</td>
</tr>
</tbody>
</table>

14. Comments/Notes:

15. Rationale:

Course Approval:

Department Curriculum Authority: Matthew Franchetti
Date 2014/12/07

Department Chairperson: Abdullah Afjeh
Date 2015/01/30

College Curriculum Authority or Chair: Efstratios Nikolaidis
Date 2015/03/06

College Dean: Mohamed Samir Hefzy
Date 2015/03/08

Graduate Council: 2015/05/12 GC 4.21.2015
MIME 6910/8910, Engineering Analysis of Smart Material Systems
Next will be offered in Fall 2016

Instructors: Dr. Mohammad Elahinia (mohammad.elahinia@utoledo.edu) 419- 530 8224

Mohammad Elahinia, Shape Memory Alloy Actuators: Modeling, Simulation, and Control, Wiley, 2014

Students: Smart material systems are becoming increasingly important in aerospace and automotive industries. Therefore, it is important to expose students to this area. Graduate Engineering students who are interested in learning about smart material systems will benefit from this course. Prerequisites are undergraduate courses in differential equations, dynamics, and vibration.

Content: In this course we will study the fundamental concepts behind different types of active materials. We will emphasize our discussion around current research topics in the different fields such as sensing, actuation, energy harvesting, and biomedical devices. We will also discuss engineering applications of active materials.

Topics: The course will focus on five main topics:

1. Piezoelectric materials
2. Shape memory alloys
3. Electroactive polymers
4. Magnetorheological fluids
5. Smart material system applications: motion control, passive and semi-active damping, active vibration control, and power harvesting

There will be 1 homework assignment per week. Homework assignments might consist of working problems and reading/reporting on research papers. We will also have classroom demonstrations and laboratories. The laboratories will require a written report. We will have approximately 3 of these during the semester.

Ph.D. students must complete an additional project on smart materials or simulations, and solve an additional problem in selected assignments. These problems are marked “for Ph.D. students”

Grade:
45% Homework, Simulations, Reports, and Presentations
25% Project
30% Exams

Final Project: This course requires each student to complete a special project in smart material systems. A written paper describing the project is to be submitted by the due date. A proposal describing the project topic and scope is due according to the course schedule. The project must be clearly related to this course and is subject to the instructor’s approval. The project report may take one of three forms:

1. A detailed survey paper, which describes a special topic in smart material systems
2. An in-depth theoretical and numerical analysis of a specific problem in smart material systems
3. A smart material systems related experiment, which makes use of methods described in the course