Within- and Between-Day Reliability of Corticomotor Assessment Techniques in the Upper Extremity

Katsumi Takeno, MS, ATC, CSCS, Grant E. Norte, PhD, ATC, CSCS, Neal R. Glaviano, PhD, ATC, Christopher D. Ingersoll, PhD, ATC, FACSM, FNATA, FASAHP

Motion Analysis & Integrative Neurophysiology Laboratory, University of Toledo

Introduction

• Transcranial magnetic stimulation (TMS) is commonly used to quantify corticomotor excitability for both healthy and pathologic populations.

• To understand of normal central neuromuscular function may help a healthcare provider identify origin of the musculoskeletal dysfunction and make informed decisions.

• While reliability of TMS-related measures has been studied extensively in lower extremity and intrinsic hand muscles, their reliability has not been fully examined in muscles in the proximal upper limb.

Methods

• 21 healthy individuals (M: 16, F: 5)

• Test-retest reliability study

 • IV: Time (Day1-A, Day1-B, Day2, Day3, Day4)

 • DV:

 ▪ Active Motor Threshold (AMT; %)
 ▪ Peak-to-peak Motor Evoked Potential amplitude @120% AMT (MEP; mV)

 • Statistical analysis

 ▪ Intraclass Correlation Coefficient (ICC;1)
 ▪ Standard Error of Measurement (SEM)
 ▪ 95% Minimal Detectable Change (MDC95)

Purpose

1. To determine the within-and-between-day reliability of common TMS measures in the proximal upper extremity, and

2. To estimate minimal true differences for TMS measurements applicable to clinical settings.

Results

AMT

<table>
<thead>
<tr>
<th>Muscle/Limb</th>
<th>Day1-A vs. D1-B</th>
<th>Day1-B vs. Day2</th>
<th>Day2 vs. Day3</th>
<th>Day3 vs. Day4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMT Upper Trapezius (Dominant)</td>
<td>0.68 (0.45, 0.84)</td>
<td>0.66 (0.43, 0.83)</td>
<td>0.70 (0.47, 0.85)</td>
<td>0.71 (0.48, 0.86)</td>
</tr>
<tr>
<td>AMT Upper Trapezius (Non-Dominant)</td>
<td>0.55 (0.25, 0.78)</td>
<td>0.53 (0.22, 0.75)</td>
<td>0.54 (0.23, 0.76)</td>
<td>0.55 (0.25, 0.77)</td>
</tr>
</tbody>
</table>

MEP

<table>
<thead>
<tr>
<th>Muscle/Limb</th>
<th>D1 vs. D2</th>
<th>D1 vs. D3</th>
<th>D1 vs. D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMT Flexor Carpi Radialis (Dominant)</td>
<td>0.86 (0.69, 0.94)</td>
<td>0.88 (0.74, 0.95)</td>
<td>0.85 (0.67, 0.94)</td>
</tr>
<tr>
<td>AMT Flexor Carpi Radialis (Non-Dominant)</td>
<td>0.77 (0.52, 0.90)</td>
<td>0.71 (0.41, 0.88)</td>
<td>0.67 (0.32, 0.86)</td>
</tr>
</tbody>
</table>

MDC95 for AMT (%)

<table>
<thead>
<tr>
<th>Muscle/Limb</th>
<th>Day1-A vs. D1-B</th>
<th>Day1-B vs. Day2</th>
<th>Day2 vs. Day3</th>
<th>Day3 vs. Day4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Trapezius</td>
<td>3.89</td>
<td>7.07</td>
<td>11.03</td>
<td>10.51</td>
</tr>
<tr>
<td>Middle Deltoid</td>
<td>0.47</td>
<td>5.15</td>
<td>2.13</td>
<td>5.29</td>
</tr>
<tr>
<td>Flexor Carpi Radialis</td>
<td>2.60</td>
<td>5.45</td>
<td>6.75</td>
<td>7.95</td>
</tr>
</tbody>
</table>

Discussion

AMT

• Reliability

 ▪ FCR ≥ MD > UT

 ▪ Difference in cortical representations and corticospinal projections

 ▪ Higher motor threshold for UT should require higher TMS intensity in testing UT (45-55%) > MD (35-45%) > FCR (30-40%)

MEP

• Poor reliability across the sessions under current testing protocol

• Testing techniques still underdeveloped

 ▪ Alternative (subject’s position, pre-activation) methods?

 ▪ Increased number of stimuli?

 ▪ How to normalize the data for comparison?

Recommendation for use

AMT was generally reliable for MD and FCR in clinical research

Conclusions

• AMTs produced acceptable reliability to examine corticomotor excitability for MD and FCR in healthy individuals.

• UT was altogether less reliable for both AMT and MEP.

• MEPs demonstrated poor reliability with the techniques described in this study.

References

