Electrolyte Physiology

Something in the way she moves me...
Electrolyte Movement

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- CONDUCTANCE (G-ion)
- PERMEABILITY
 - CHANNELS: small ions
 - PORES: medium-sized molecules (sweat)
 - TRANSPORT PROTEINS
Electrolyte Movement

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- CONDUCTANCE (G-ion)
- PERMEABILITY
 - CHANNELS: small ions
 - PORES: medium-sized molecules (sweat)
 - TRANSPORT PROTEINS
Electrolyte Movement

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- CONDUCTANCE (G-ion)
- PERMEABILITY
 - CHANNELS: small ions
 - PORES: medium-sized molecules (sweat)
 - TRANSPORT PROTEINS
Electrolyte Movement

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- CONDUCTANCE (G-ion)
- PERMEABILITY
 - CHANNELS: small ions
 - PORES: medium-sized molecules (sweat)
 - TRANSPORT PROTEINS
Electrolyte Movement

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- **CONDUCTANCE (G-ion)**
- PERMEABILITY
 - CHANNELS: small ions
 - PORES: medium-sized molecules (sweat)
 - TRANSPORT PROTEINS
Electrolyte Movement

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- CONDUCTANCE (G-ion)
- PERMEABILITY
 - CHANNELS: small ions
 - PORES: medium-sized molecules (sweat)
 - TRANSPORT PROTEINS
Electrolyte Movement

- **Depolarize**: to become positive from baseline
- **Overshoot**: more positive than the threshold potential
- **Repolarization**: to become negative from a positive potential
- **Hyperpolarization** (or undershoot): to become more negative than baseline potential
Sodium Channels

Cyto

PLASMA

gNa

↑gNa

G-Na

INACTIVATED

RESET
DEP

$\frac{0}{gNa}$

REP

$\frac{3}{gk}$

\[\frac{4}{gNa} \]

AUTOMATICITY
\[P_{\text{seg}} \xrightarrow{Q} S_{\text{ST seg}} \xrightarrow{T-U} \]

\[\text{PR int} \qquad \text{QT int} \]

\[\text{Height} = \text{Voltage} \]

\[\overline{\text{Width} = \text{Duration}} \]
HEART BLOCKS

- NORMAL PR-interval: <0.2sec
- FIRST DEGREE HEART BLOCK: fixed and prolonged PR-interval
 - Problem is AT the SA node or BETWEEN the SA node and the AV node
 - NO treatment necessary
 - Speeding up the heart rate (exercise) will make the block disappear
HEART BLOCKS, cont

- SECOND DEGREE HEART BLOCK
 - MOBITZ 1: progressive lengthening of PR-interval until QRS is dropped
 - Early ischemia at the AV node
 - Also called WENCKEBACK’S
 - Put in pacemaker if symptomatic; do nothing if asymptomatic
MOBITZ II: PR-interval is normal; QRS complexes are dropped erratically

- Late ischemia at the AV node
- Some cells are negative; some cells are positive
- ALL must have a pacemaker
HEART BLOCKS, cont

- THIRD DEGREE HEART BLOCK
 - COMPLETE AV DISSOCIATION
 - AV-node has INFARCTED
 - P-waves and QRS complexes have NO relationship
 - ALL must have a pacemaker
QRS COMPLEXES

- Premature ventricular complex (PVC)
 - No P-wave; wide QRS complex; a pause following the QRS complex
 - **BIGEMINY**: A PVC every other beat
 - **TRIGEMINY**: A PVC every third beat
 - **VENTRICULAR TACHYCARDIA**: three or more consecutive PVCs with a minimum heart rate of 150
 - **VENTRICULAR FIBRILLATION**: NO recognizable QRS complexes
VENTRICULAR TACHYCARDIA

- IF PATIENT STABLE: treat with medication
- IF PATIENT UNSTABLE:
 - SHOCK with 200 joules
 - SHOCK with 300 joules
 - SHOCK with 360 (max) joules
 - LIDOCAINE
 - SHOCK
 - BRETYLIUM or AMIODORONE
VENTRICULAR FIBRILLATION

- **EPINEPHRINE**
- **TREAT LIKE VENTRICULAR TACHYCARDIA**
ATRIAL ARRHYTHMIAS

- Premature atrial contraction (PAC)
- Multifocal atrial tachycardia
- Paroxysmal supraventricular tachycardia
- Atrial flutter
- Atrial fibrillation
 - If ACUTE and STABLE: treat with medication
 - If ACUTE and UNSTABLE: DEFIBRILLATE
 - If CHRONIC: treat medically; put on coumadin
 - May defibrillate after minimum 2 weeks on coumadin

- TX: use synchronized button
ELECTROLYTES AFFECT DEPOLARIZATIONS

- FOUR SPECIALIZED MEMBRANES
 - NEURONS
 - SKELETAL MUSCLES
 - SMOOTH MUSCLES
 - CARDIAC MUSCLE
 - ATRIUM: uses calcium to depolarize
 - VENTRICLE: uses sodium to depolarize; uses intracellular calcium to contract; depends on extracellular calcium to trigger off intracellular calcium release
HYPERMAGNESEMIA

- LESS LIKELY TO DEPOLARIZE
- AFFECTS CALCIUM AND POTASSIUM
- GETS IN THE WAY OF SODIUM
- TX: IV normal saline; loop diuretic
HYPO MAGNESEMIA

- MORE LIKELY TO DEPOLARIZE
- AFFECTS CALCIUM and POTASSIUM
- AFFECTS all KINASES
- TX: magnesium sulphate
HYPERCALCEMIA

- LESS LIKELY TO DEPOLARIZE everywhere except the atrium (more likely)

- SMOOTH MUSCLE: initially less likely (blocks nerve) to depolarize, then more likely to CONTRACT (due to second messenger systems)

- TX: IV normal saline; loop diuretics
HYPOCALCEMIA

- More likely to depolarize everywhere except the atrium (less likely)
- Will affect second messenger systems
- Smooth muscle: initially more likely to depolarize (nerve fires more) followed by less likely to contract (affects second messenger systems)
HYPERKALEMIA

- Initially MORE LIKELY TO DEPOLARIZE
- Potassium will flow into the cell, taking the membrane potential closer to threshold
- Potassium gets trapped INSIDE the cell during repolarization; repolarization therefore takes longer > LESS LIKELY TO DEPOLARIZE
 - Peaked T waves
 - Widened T waves
 - Prolonged QT interval
 - Predisposes to arrhythmias
HYPOKALEMIA

- LESS LIKELY TO DEPOLARIZE
- Potassium will rush out of the cells, making them more negative
 - Cells repolarize even faster
 - Cells repolarize too much
 - Narrow T waves
 - Flat T waves
 - Flipped and inverted T wave
 - The U wave (exaggerated flipped T wave)
HYPERNATREMIA

- MORE LIKELY TO DEPOLARIZE
- SODIUM rushes into the cells, making them more positive
- After sometime, the NA-K ATP-ase kicks into high gear, making the cells more negative (less likely to depolarize)
- TX: IV normal saline; correct slowly
HYPONATREMIA

- MORE LIKELY TO DEPOLARIZE
- SODIUM will now leak out of a cell by Na-K exchange
- When calcium leaks INTO cell in exchange for sodium leaking OUT, cells become more positive
- TX: IV normal saline; correct slowly
 - Use 3% saline if sodium under 120 with symptoms
 - Use fluid restriction if hyponatremia due to SIADH
Hyponatremia
The End: Turn off the lights
Antiarrhythmics

You’re blocking my way!!!
Class 1: Na channel blockers

- 1a
 - Quinidine
 - Procainamide
 - Disepyramide

- 1b
 - Lidocaine
 - Tocainide
 - Mixelitine
 - Phenytoin

- 1c
 - Encainide
 - Flecainide
 - propofenone
Class II: Beta Blockers

- All end in –lol
- Specific beta 1: begins with A thru M, but NOT L or C
- Blocks B-1 and B-2: begins with N thru Z, including L and C
Class II: Beta Blockers

- Propanolol
- Esmalol
- Sotalol
- Timalol
- Butexalol
- Labetalol
- Carvedilol
- Acebutalol
- Atenalol
- Pindalol
Class III: K Channel blockers

- Napa (from procainamide)
- Sotalol
- Bretylium
- Amiodorone
Class IV: Ca Channel blocker

- Verapamil
- Diltiazem
- Nifedipine
- Nicardipine
- Nimodipine
- Femlodipine
- Amlodipine

- Quinidine
- Procainamide
- Phenytoin
IF YOU PLAY WITH LYTES...
You may go down
IN FLAMES