# **Electrolyte Physiology**

Something in the way she moves me...

- □ CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- ☐ CONDUCTANCE (G-ion)
- PERMEABILITY
  - CHANNELS: small ions
  - PORES: medium-sized molecules (sweat)
  - TRANSPORT PROTEINS

- CONCENTRATION GRADIENT
- □ ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- □ CONDUCTANCE (G-ion)
- PERMEABILITY
  - CHANNELS: small ions
  - PORES: medium-sized molecules (sweat)
  - TRANSPORT PROTEINS

- CONCENTRATION GRADIENT
- ☐ ELECTRICAL GRADIENT
- □ DRIVING FORCE
- NERNST NUMBER (E-ion)
- ☐ CONDUCTANCE (G-ion)
- PERMEABILITY
  - CHANNELS: small ions
  - PORES: medium-sized molecules (sweat)
  - TRANSPORT PROTEINS

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- □ NERNST NUMBER (E-ion)
- □ CONDUCTANCE (G-ion)
- PERMEABILITY
  - CHANNELS: small ions
  - PORES: medium-sized molecules (sweat)
  - TRANSPORT PROTEINS

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- □ CONDUCTANCE (G-ion)
- PERMEABILITY
  - CHANNELS: small ions
  - PORES: medium-sized molecules (sweat)
  - TRANSPORT PROTEINS

- CONCENTRATION GRADIENT
- ELECTRICAL GRADIENT
- DRIVING FORCE
- NERNST NUMBER (E-ion)
- □ CONDUCTANCE (G-ion)
- □ PERMEABILITY
  - CHANNELS: small ions
  - PORES: medium-sized molecules (sweat)
  - TRANSPORT PROTEINS

- Depolarize: to become positive from baseline
- Overshoot: more positive than the threshold potential
- Repolarization: to become negative from a positive potential
- Hyperpolarization ( or undershoot): to become more negative than baseline potential

#### Sodium Channels







P Seg P/S ST seg TU 1 PRint 1 QTint HEIGHT = VOLTAGE WIDTH = Duration

Bachman Fibers LBB RBB



4VL AVR\_

#### **HEART BLOCKS**

- NORMAL PR-interval : <0.2sec</p>
- ☐ FIRST DEGREE HEART BLOCK: fixed and prolonged PR-interval
  - Problem is AT the SA node or BETWEEN the SA node and the AV node
  - NO treatment necessary
  - Speeding up the heart rate (exercise) will make the block disappear

# HEART BLOCKS, cont

- ☐ SECOND DEGREE HEART BLOCK
- MOBITZ 1: progressive lengthening of PR-interval until QRS is dropped
  - Early ischemia at the AV node
  - Also called WENCKEBACK'S
  - Put in pacemaker if symptomatic; do nothing if asymptomatic

# HEART BLOCKS, cont

- MOBITZ II: PR-interval is normal; QRS complexes are dropped erratically
  - Late ischemia at the AV node
  - Some cells are negative; some cells are positive
  - ALL must have a pacemaker

# HEART BLOCKS, cont

- ☐ THIRD DEGREE HEART BLOCK
  - COMPLETE AV DISSOCIATION
  - AV-node has INFARCTED
  - P-waves and QRS complexes have NO relationship
  - ALL must have a pacemaker

#### **QRS COMPLEXES**

- □ Premature ventricular complex (PVC)
  - No P- wave; wide QRS complex; a pause following the QRS complex
  - **BIGEMINY**: A PVC every other beat
  - TRIGEMINY: A PVC every third beat
  - VENTRICULAR TACHYCARDIA: three or more consecutive PVCs with a minimum heart rate of 150
  - VENTRICULAR FIBRILLATION: NO recognizable QRS complexes

#### **VENTRICULAR TACHYCARDIA**

- □ IF PATIENT STABLE: treat with medication
- ☐ IF PATIENT UNSTABLE:
  - SHOCK with 200joules
  - SHOCK with 300joules
  - SHOCK with 360(max)joules
  - LIDOCAINE
  - SHOCK
  - BRETYLIUM or AMIODORONE

#### **VENTRICULAR FIBRILLATION**

- EPINEPHRINE
- TREAT LIKE VENTRICULAR TACHYCARDIA

#### **ATRIAL ARRHYTHMIAS**

- Premature atrial contraction (PAC)
- Multifocal atrial tachycardia
- Paroxysmal supraventricular tachcardia
- Atrial flutter
- Atrial fibrillation
  - If ACUTE and STABLE: treat with medication
  - If ACUTE and UNSTABLE: DEFIBRILLATE
  - If CHRONIC: treat medically; put on coumadin
  - May defibrillate after minimum 2 weeks on coumadin

□ TX: use synchronized button

#### **ELECTROLYTES AFFECT DEPOLARIZATIONS**

- □ FOUR SPECIALIZED MEMBRANES
  - NEURONS
  - SKELETAL MUSCLES
  - SMOOTH MUSCLES
  - CARDIAC MUSCLE
    - □ ATRIUM: uses calcium to depolarize
    - VENTRICLE: uses sodium to depolarize; uses intracellular calcium to contract; depends on extracellular calcium to trigger off intracellular calcium release

#### **HYPERMAGNESEMIA**

- LESS LIKELY TO DEPOLARIZE
- AFFECTS CALCIUM AND POTASSIUM
- GETS IN THE WAY OF SODIUM
- TX: IV normal saline; loop diuretic

#### **HYPOMAGNESEMIA**

- MORE LIKELY TO DEPOLARIZE
- AFFECTS CALCIUM and POTASSIUM
- AFFECTS all KINASES
- □ TX: magnesium sulphate

#### **HYPERCALCEMIA**

- LESS LIKELY TO DEPOLARIZE everywhere except the atrium (more likely)
- SMOOTH MUSCLE: initially less likely (blocks nerve) to depolarize, then more likely to CONTRACT (due to second messenger systems)
- TX: IV normal saline; loop diuretics

#### **HYPOCALCEMIA**

- MORE LIKELY TO DEPOLARIZE everywhere except the atrium (less likely)
- WILL AFFECT SECOND MESSENGER SYSTEMS
- SMOOTH MUSCLE: initially more likely to depolarize (nerve fires more) followed by less likely to CONTRACT (affects second messenger systems)

#### **HYPERKALEMIA**

- Initially MORE LIKELY TO DEPOLARIZE
- Potassium will flow into the cell, taking the membrane potential closer to threshold
- Potassium gets trapped INSIDE the cell during repolarization; repolarization therefore takes longer > LESS LIKELY TO DEPOLARIZE
  - Peaked T waves
  - Widened T waves
  - Prolonged QT interval
    - Predisposes to arrythmias

#### **HYPOKALEMIA**

- LESS LIKELY TO DEPOLARIZE
- Potassium will rush out of the cells, making them more negative
  - Cells repolarize even faster
  - Cells repolarize too much
    - Narrow T waves
    - ☐ Flat T waves
    - ☐ Flipped and inverted T wave
    - ☐ The U wave (exaggerated flipped T wave)

#### **HYPERNATREMIA**

- MORE LIKELY TO DEPOLARIZE
- SODIUM rushes into the cells, making them more positive
- After sometime, the NA-K ATP-ase kicks Into high gear, making the cells more negative (less likely to depolarize)
- □ TX: IV normal saline; correct slowly

#### **HYPONATREMIA**

- MORE LIKELY TO DEPOLARIZE
- SODIUM will now leak out of a cell by Na-K exchange
- When calcium leaks INTO cell in exchange for sodium leaking OUT, cells become more positive
- TX: IV normal saline; correct slowly
  - Use 3% saline if sodium under 120 with symptoms
  - Use fluid restriction if hyponatremia due to SIADH

# Hyponatremia



# The End: Turn off the lytes

# **Antiarrhythmics**

YOU'RE BLOCKING My WAY!!

#### Class 1: Na channel blockers

- □ 1a
  - Quinidine
  - Procainamide
  - Disepyramide
- □ 1b
  - Lidocaine
  - Tocainide
  - Mixelitine
  - Phenytoin
- □ 1c
  - Encainide
  - Flecainide
  - propofenone

#### Class II: Beta Blockers

- ☐ All end in —lol
- Specific beta 1: begins with A thru M, but NOT L or C
- Blocks B-1 and B-2: begins with N thru Z, including L and C

#### Class II: Beta Blockers

- Propanolol
- Esmalol
- Sotalol
- Timalol
- Butexalol
- Labetalol
- Carvedilol

Acebutalol

**Atenalol** 

**Pindalol** 

#### Class III: K Channel blockers

- □ Napa (from procainamide)
- Sotalol
- □ Bretylium
- Amiodorone

#### Class IV: Ca Channel blocker

- Verapamil
- Diltiazem
- Nifedipine
- Nicardipine
- Nimodipine
- □ Femlodipine
- Amlodipine

Quinidine

Procainamide

Phenytoin

#### IF YOU PLAY WITH LYTES...

# You may go down INFLAMES

