Neurophysiology Making The Connections

Embryology of the Brain

In the first trimester...

- Notochord visible by three weeks
- Brain fully formed by 8 weeks
- Brain is active early with movements, especially reflexes
- Swallowing is an intrauterine reflex
- Brain is active in formation of amniotic fluid

Amniotic Fluid

- 80% is a filtrate of mom's plasma
 - Fetus SUBTRACTS by swallowing the fluid,
 - Fetus must absorb and digest the fluid
- 20% is added by the fetus
 - Fetus then urinates the additional fluid into the sac

Polyhydramnios

- Neuromuscular disease
 - Autonomic dysfunction
 - Muscle disease
- GI obstruction

Oligohydramnios

- Renal agenesis
- Urinary outlet obstruction

Potter's syndrome

Spinal Cord

- Develops from the notochord
- Goes down as far as L-1 or L-2
- Ends as the Conus Medullaris
- Nerves come off to the sides as the cauda equina
- Filum terminalis: anchors the tip of the conus medullaris to base of the spinal canal

Vertebral Arches

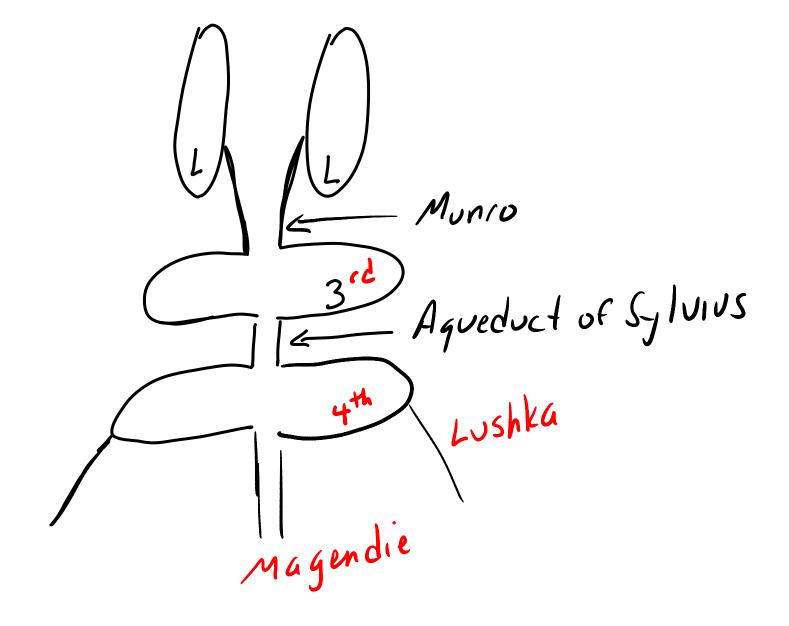
- Fuse ventral to dorsal
- Fusion begins at the cervical level and proceeds bidirectionally
- If child born prematurely, a hole can be still present at either end

Upper vertebral arch defects

- Anencephaly
- Encephalocele
- Encephalomeningocele
- encephalomeningomyelocele

Lower vertebral arch defects

- Spina Bifida Occulta
- Spina Bifida Aperta
- Meningocele
- Meningomyelocele
 - Arnold Chiari Malformation
 - Syringomyelia


Now you need some CSF

CSF

- A filtrate of plasma
- Made by the Choroid Plexus in each ventricle
- Requires vitamin A
- Requires carbonic anhydrase

How CSF differs from plasma

- Less HCO3
- More CL
- Lower pH 7.34
- Up to 25 WBCs normal in first month of life only; after that, only up to 3 WBCs normal

CSF Flow

 Lateral ventricles > foramen of Munro > 3rd ventricle > aqueduct of Sylvius > 4th ventricle > foramina of Lushka and Magendie > subarachnoid layer > spinal canal > dural sinuses > back into plasma

Vomiting Centers

- Chemotactic Trigger Zone: located on the floor of the 4th ventricle
 - Responds to any increase in ICP
 - Uses dopamine
- Area Postrema: located on the blood side of blood:brain barrier
 - Responds to offensive smells or particles
 - Uses dopamine

Hydrocephalus

- Noncommunicating: due to an obstruction
- Communicating: overproduction of CSF

• Applies pressure on the brain

Communicating Hydrocephalus

- Newborns: mainly in premature newborns
 Intraventricular hemorrhage
- Children: due to inflammation – meningitis
- Adults: overingestion of vitamin A – Pseudotumor Cerebri
- Elderly: due to brain atrophy

 Normal Pressure Hydrocephalus

Normal Pressure Hydrocephalus (NPH)

- ventricles expands as the brain atrophies
- Enlarged ventricles then compress the long midline fibers that go to the bladder and legs
- Dementia
- Incontinence
- ataxia

To treat NPH...

PLACE A VP SHUNT

Noncommunicating Hydrocephalus

- Due to some form of obstruction
- In newborns
 - Aqueductal stenosis
 - Dandy-Walker cyst
- In children: meningitis, especially TB
- In adults: cancer
- In elderly: cancer

The role of CSF

- To add cushion for the brain
- Shock absorption

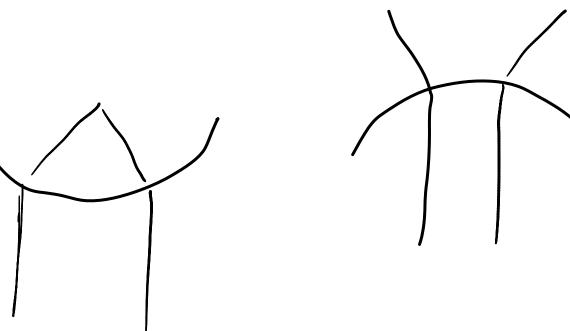
- Head Injury
 - Coup lesions
 - Contracoup lesions

Embryology of the brain

Telencephalon - Cerebrum Prosencephalon Diencephalon — Tijalami Basal gonglig MESEncephalon_MIDBRAIN Mesencephalon — Rhombencephalon Metencephalon Cerebellum Myelencephalon_Medulla

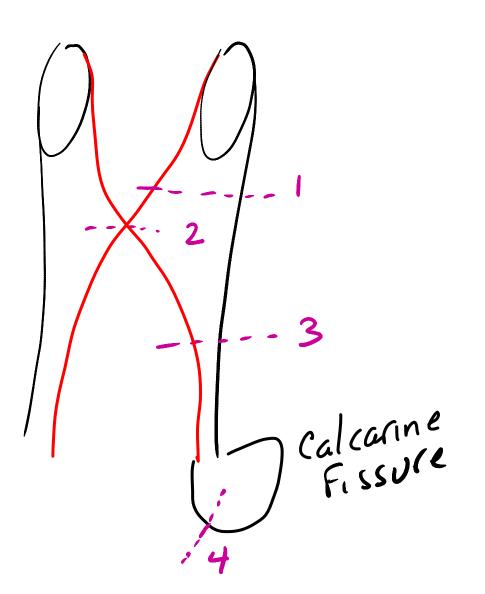
How to organize Neurophysiology

Visual Cortex


- Remember that everything is REVERSED
- Temporal fibers see the nasal visual field
- Nasal fibers see the temporal visual field
- Light must hit the retina by 3 months of age or the child is blind for life
- You must verify that a child has a RED reflex on eye exam at birth

Abnormalities of the Eyes

- Anisocoria: unequal pupil size
- Amblyopia: difference in visual acuity
- Strabismus: misalignment of the eyes
- Stigmatism: corneal defect
- Myopia: nearsightedness
- Hyperopia: farsightedness
- Presbyopia: loss of accomodation seen with aging



CONCAVE

STIGMATISM Straight Line Test

Visual field deficits

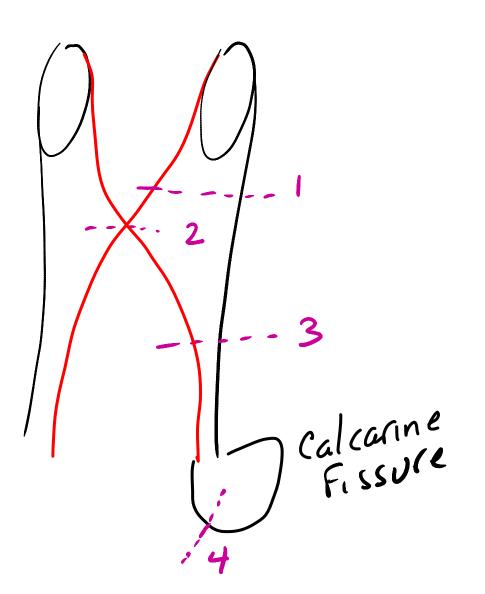
White Reflex

- Cataracts: opacification of the lens
 - Does not allow light to hit the retina
 - Must be removed
 - Increased incidence with high glucose or galactose (sorbitol or galactitol accumulates)
 - Idiopathic: 90%
 - Diabetes or galactosemia
 - Rubella

White Reflex

- Retinoblastoma (rare)
 - Rb gene
 - Cancer
 - High association with Ewing's sarcoma

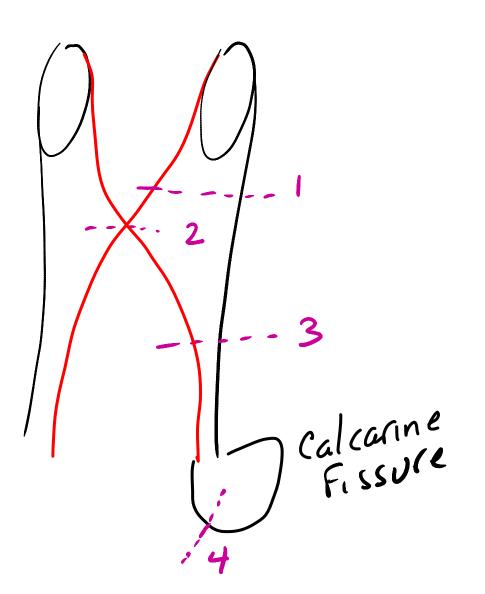
Monocular blindness


- Newborns: cataracts or retinoblastoma
- Children: optic nerve gliomas
 - Neurofibromatosis
 - MEN III
- Adults: embolic phenomena
 - TIA
 - Acute retinal artery occlusion
 - Acute retinal vein occlusion
- Elderly: macular degeneration

Optic Chiasm Lesions

- Loss of nasal fibers bilaterally
- Bitemporal hemianopsia

- Pituitary tumors: 90%
 - Pituitary sits just beneath the chiasm
- Pineal tumors
 - Pineal gland sits just lateral to the chiasm


Visual field deficits

Optic Tract Lesions

- Lesion of IPSILATERAL temporal fibers and CONTRALATERAL nasal fibers
- Homonymous Hemianopsia
- Mcc: cancers and tumors

Visual field deficits

Quadranopsia

- Only way to get such a lesion is back in the calcerine fissure
- Pie in the sky deficit
- Make sure you reverse BOTH words

What unique information does each cortex contain?

Frontal Lobe (Precentral Gyri)

- CST (motor fibers) originates from here
- Unique information:
 - Personality
 - Abstract reasoning

Frontal Lobe Lesions

- Atonic seizures
- Dimentias
 - Alzhiemer's
 - Pick's disease
- Schizophrenia: loss of asymmetry
- Frontal lobotomies

Temporal Lobe

- Hearing
- Balance
- Hallucinations (controlled by serotonin)

• Posterior temporal lobe: Wernicke's area

Temporal Lobe Lesions

- Temporal lobe seizures
- Schizophrenia
- Dementias
- Drugs
 - SSRI
 - Amphetamines

Amphetamines

- Taken up presynaptically; cause release of catecholamines
- Clue: vertical nystagmus

Amphetamines

- Used in ADD
 - Methylphenidate
 - Pemoline
 - Adderal
 - dexadrine
- OTC for weight loss – dexatrim
- Cause hallucinations
 - LSD
 - PCP
 - ECSTACY

SSRI's

- Fluoxetine
- Paroxetine
- Luvoxetine
- Sertraline
- Nefazadone
- Trazadone

Parietal Lobes

- Dominant lobe: long term memory; all the things you learned since kindergarten
 - left side is dominant in 90% of right-handed and left-handed people
- Nondominant lobe: apraxia and hemineglect
 - Right side is nondominant in 90% of righthanded and left-handed people

THALAMI

- Epithalamus
- Thalamus
- Hypothalamus
- Subthalamic Nucleus

Epithalamus

 The ONLY nucleus with NO known function

Thalamus

- ALL SENSORY information in and out of the brain MUST stop here
- ALL information about the ARMS stay LATERAL
- ALL information about the LEGS stay MEDIAL

Thalamic Infarct

• ALL sensory information from the body is lost, but motor information is intact

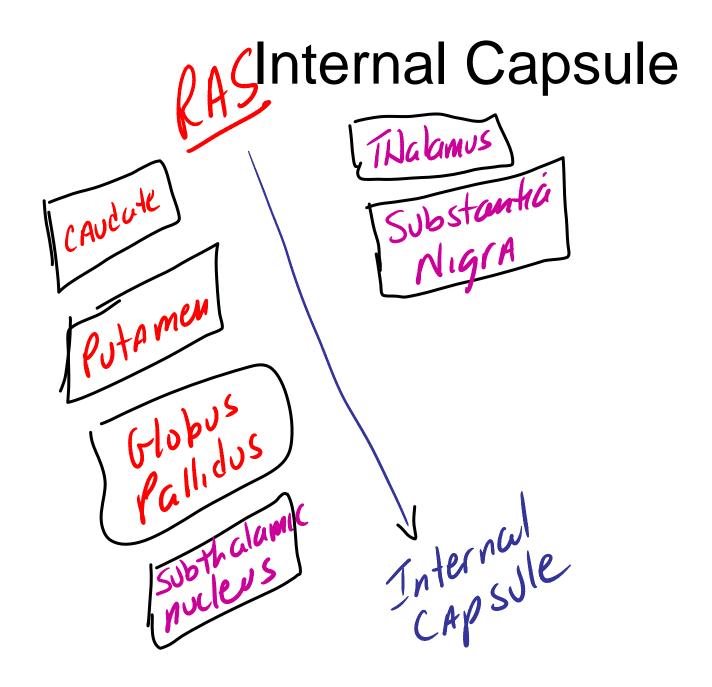
Hypothalamus

- Controls hunger
 - Hunger center: lateral
 - Satiety center: medial
- Controls menstrual cycle
- Controls temperature
 - Anterior: cools
 - Posterior: warms
- Controls stress response

Stress Response

- Parasympathetic discharge always first
- Sympathetic discharge always second

- Stress ulcers
- Curling's ulcers
- Cushing's ulcers
- IBS


Acetomenophen

- Works at the level of the hypothalamus
- First, it cools the body (stimulates anterior hypothalamus) then it resists fever (blocks posterior hypothalamus)
- Oxidizes the liver (toxicity)

Treat with n-acetylcystiene (reducing agent);
 the four hour level is the most important factor

Subthalamic Nucleus

- Final relay station for coordinating fine motor movements
- Lesion: Ballismus and Hemiballismus

Substantia Nigra

- Responsible for INITIATING movements
- Uses DOPAMINE for neurotransmitter
- Receives inhibitory signals from basal ganglia via ACH or GABA

Parkinson's Disease

- Loss of DOPAMINE fibers from substantia nigra to striatum (caudate and putamen)
- Unable to initiate activities
- Mask like facies
- Bradykinesia
- Shuffling gait
- Fenestrating gait
- Pill rolling tremor
- Autonomic dysfunction: Shy Dragger syndrome

Parkinson's Disease, cont

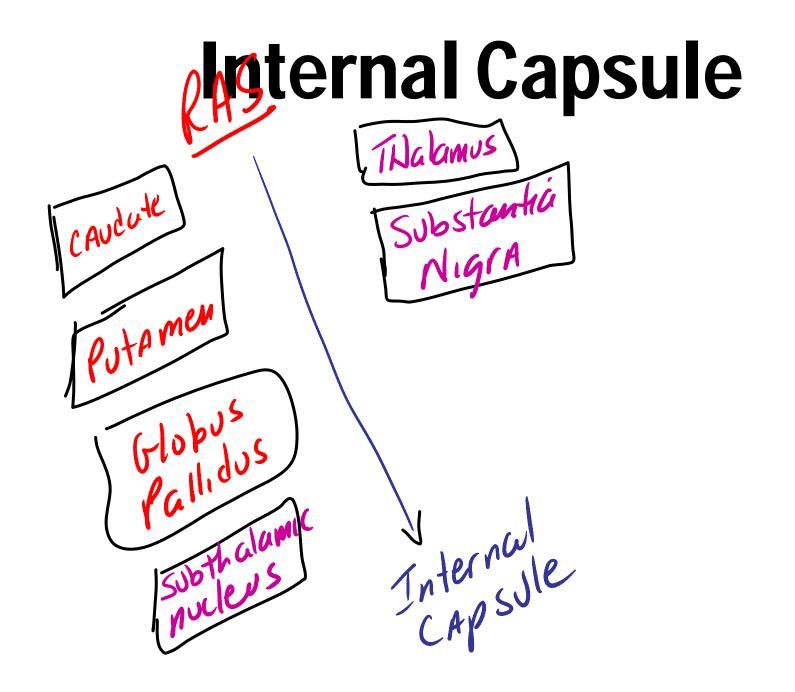
- Treatment: L-dopa/ carbidopa
 - Bromocryptine
 - Amantadine
 - selegyline

Movement disorder in middle-aged people

- Huntington's disease
 - 90%
 - Autosomal dominant
 - Trinucleotide repeats
 - Caudate nucleus involved
 - Anticipation
 - Decreased GABA fibers
 - Treat with DA blockers

- Wilson's disease
 - < 10%
 - Autosomal recessive
 - Ceruloplasmin def
 - Copper excess
 - Lenticular nucleus involved
 - Kayser-Fleischer rings
 - Liver involvement
 - Treat with penicillamine

Internal Capsule


- ALL MOTOR fibers going in and out of the brain goes through here
- Blood supply comes from the lenticulostriate arteries (smallest arteries in the brain)
- Lacunar hemorrhages: due to HTN – Causes significant MOTOR deficits

Reticular Activating System (RAS)

- Maintain FOCUS on one item at a time
- Requires NE and Serotonin
- C-AMP second messenger
- Has a refractory period first thing in the morning

Attention Deficit Disorder

- ADD or ADHD
- RAS not working
- Poor attention and focus
- Restlessness
- Unable to sit long enough to complete a task
- Tx: methylphenidate; pemoline; dexadrine; adderal

Midbrain \ corticorubral -7 (N ' Red Nucleus rubrospinal J cause Flexion UE -> inhibit Extensioni > inhibit Extension

Corticospinal Tract

- Responsible for fine motor activity
- Has to inhibit extension so that smooth flexion can occur
- Spasticity
- Babinski
- Hyperreflexia
- Clonus

Corticospinal Tract, cont

- Fibers originate from the frontal lobes, the precentral gyri
- Fibers descend through the internal capsule and CROSS at the medullary pyramids

CST Pathology

- Atonic seizures: depolarization goes across the frontal cortex
- B-12 deficiency
- ALS

Midbrain \ corticorubral -7 (N ' Red Nucleus rubrospinal J cause Flexion UE -> inhibit Extensioni > inhibit Extension

Increased Intracranial Pressure

- First sign: papilledema
- First symptom: headache
- Second sign: esotropia (CN VI paralysis)
- Second symptom: diplopia or blurred vision

Increased Intracranial Pressure

- First sign of herniation: (CN III paralysis) loss of pupillary reflex; anisocoria
- Herniation is down to level just above the red nucleus
- CST and Corticorubral pathways are both compressed

If Herniation Continues...

- Second sign of herniation: DECORTICATE posturing
- Compression has ocurred to below CN III but above the red nucleus
- Red nucleus still makes the upper extremities flex while the legs extend
- UNTIL...

The Final Push

- Herniation goes beyond the red nucleus
- CST and Corticorubral and rubrospinal tracts are all lost
- All extremities will extend by default
- Medulla is pushed through the foramen magnum.
- DECEREBRATE posturing

Dorsal Columns

- Vibratory sensation
- Two-point discrimination
- Position sense
- Conscious proprioception
- The only sensory pathway with four synapses

Dorsal Columns, cont

- Fasciculus: made up of a few fibers
- Tractus: more fibers than a fasciculus

- Gracilis: carries leg fibers; located MEDIALLY
- Cuneatus: carries arm fibers; located laterally

Dorsal Columns, cont

- FIRST SYNAPSE: dorsal root ganglion
- Forms fasciculus gracilis, then tractus gracilis (lower extremities)
- Forms fasciculus cuneatus, then tractus cuneatus (upper extremities)
- SECOND SYNAPSE: nucleus gracilis and nucleus cuneatus in MEDULLA

Dorsal Columns, cont

- THIRD SYNAPSE: THALAMUS
- FOURTH SYNAPSE: parietal lobes (postcentral gyri)

Dorsal Column Pathology

- Syphilis
- Vitamin B-12 Def
- Brown-Sequard

Spinothalamic Tract

- Pain and Temperature
- The only pathway that CROSSES in the spinal cord
- Fibers enter the spinal cord, ascend two levels, then cross to opposite side via the anterior white commissure

Spinothalamic Tract

- FIRST SYNAPSE: dorsal root ganglion
- SECOND SYNAPSE: thalamus
- THIRD SYNAPSE: parietal lobes (postcentral gyri)

Spinothalamic Tract Pathology

• Syringomyelia

Spinocerebellar Pathway

- The only pathway in the spinal cord that crosses twice (equivalent to ipsilateral)
- Responsible for depth perception
- Signs of damage:
 - INTENTION TREMOR
 - DYSMETRIA or PRONATOR DRIFT
 - DYSDIODOKINESIS
 - ROMBERG SIGN

Spinocerebellar Pathway, cont

- This pathway does NOT reach the cortex
- Unconscious proprioception
- FIRST SYNAPSE: dorsal root ganglion
- SECOND SYNAPSE: thalamus
- THIRD SYNAPSE: cerebellum

Spinocerebellar Pathway Pathology

- Alcohol attacks the vermis (midline) of the cerebellum while other diseases attack the hemispheres
- Fredrieck's Ataxia
- Ataxia Telangiectasia
- adrenoleukodystrophy

PONS

- Responsible for responding to the environment
- Contains the PNEUMOTACTIC and APNEUSTIC center
- CNS area most sensitive to osmotic shifts

Telencephalon - Cerebrum Prosencephalon Diencephalon — Tijalami Basal gonglig MESEncephalon_MIDBRAIN Mesencephalon — Rhombencephalon Metencephalon Cerebellum Myelencephalon_Medulla

Pons – Pathology

- Locked-in Syndrome
- Central Pontine Demyelinolysis

Medulla

Controls ALL basic functions

Make sure you know the cranial nerves !

MIDBRAIN 3 4

PONSMedulla 9 10 11 12

How Do I Figure Out Any Lesion?

You know it's a spinal cord lesion when...

- Pain and temperature loss is opposite to all other deficits
- Level of the lesion is two dermatomes above where pain and temperature loss begins and on the opposite side

You know it's a CNS lesion when...

- UMN signs on one side of the body (upper and lower extremities)
- The lesion is on the opposite side of the brain
- Use the cranial nerves to locate the level of the lesion

The most important organ!!!

• The Brain

•The End The End The End