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Hypothalamic pathways linking energy balance and reproduction
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Hill JW, Elmquist JK, Elias CF. Hypothalamic pathways
linking energy balance and reproduction. Am J Physiol Endocrinol
Metab 294: E827–E832, 2008. First published February 19, 2008;
doi:10.1152/ajpendo.00670.2007.—During periods of metabolic
stress, animals must channel energy toward survival and away from
processes such as reproduction. The reproductive axis, therefore, has
the capacity to respond to changing levels of metabolic cues. The
cellular and molecular mechanisms that link energy balance and
reproduction, as well as the brain sites mediating this function, are still
not well understood. This review focuses on the best characterized of
the adiposity signals: leptin and insulin. We examine their reproduc-
tive role acting on the classic metabolic pathways of the arcuate
nucleus, NPY/AgRP and POMC/CART neurons, and the newly iden-
tified kisspeptin network. In addition, other hypothalamic nuclei that
may play a role in linking metabolic state and reproductive function
are discussed. The nature of the interplay between these elements of
the metabolic and reproductive systems presents a fascinating puzzle,
whose pieces are just beginning to fall into place.

gonadotropin-releasing hormone; leptin; insulin; kisspeptin

SINCE ANIMALS UNDER METABOLIC STRESS must invest energy in
survival first and reproduction second, the reproductive axis
has the capacity to respond to changes in caloric status. Indeed,
every level of the reproductive axis, the hypothalamus, pitu-
itary gland, and gonad, has the capacity to respond to metabolic
cues. In humans, anorexia, cachexia, and excessive exercise
can all shut down reproductive cyclicity and the secretion of
gonadal steroids that are essential for the health of many organs
and tissues (28, 57). On the opposite end of the spectrum,
obesity and diabetes can also negatively affect fertility (74, 92).
The mechanisms regulating these processes are not well un-
derstood, but recent work has begun to yield new insights.

While long recognized, the exact nature of the relationship
between energy stores and fertility has been somewhat contro-
versial. Work in rodent models (55) and human subjects (40,
41) gave rise to the idea that a female’s fat reserves must
exceed a critical threshold for ovulation to occur. However, it
has now become clear that the body allocates energy based on
current energy balance as opposed to the absolute amount of
stored adipose tissue. Ovulation is suppressed when a mammal
is in negative energy balance whether that state is caused by
inadequate food intake, excessive locomotor activity, or heavy
thermoregulatory costs. In the mouse, ovulation occurs when-
ever extant energetic conditions permit, unless the process is
blocked by nonmetabolic stress, social cues, or a predictive
seasonal cue such as photoperiod. Mice in the wild often

continue to ovulate and become pregnant during seasons of
famine despite lacking the energy reserves to carry a litter to
term (12). In the human, menstrual irregularities, amenorrhea,
and infertility can result from inadequate food intake to com-
pensate for energy demands; for instance, when a severe
athletic training schedule is relaxed, luteinizing hormone (LH)
pulses and menstrual cycles resume without a significant in-
crease in body fat content (2, 31). The sensitivity of the
reproductive axis to current energy availability has been high-
lighted by recent work suggesting that even subtle declines in
energy availability can produce clinically recognized menstrual
disturbances (29).

The hypothalamus plays a crucial role in maintaining fertil-
ity in all mammals. The GnRH neurons within the preoptic
area control the secretion of pituitary LH via the pulsatile
release of GnRH from their terminals in the median eminence
into the hypophysial portal blood vessels. On a minute-to-
hourly basis, the GnRH pulse generator is extremely sensitive
to energetic stress. GnRH pulses are readily suppressed by
food restriction, high or low ambient temperature, or excessive
exercise, and GnRH pulsatility returns rapidly when the ener-
getic challenge is alleviated, usually in one to two hours. Both
males and females of a large number of species exhibit this
suppression despite the fact that a temporary halt to spermat-
ogenesis is unlikely to have any long-term reproductive con-
sequences in the male (11, 39, 73).

Circulating Leptin and Insulin Affect Fertility

Insulin. Central control of reproduction requires the hypo-
thalamus to receive information regarding the energy status of
an animal, for example by sensing hormonal signals secreted
into the circulation in proportion to body adipose stores.
Woods and Porte originally suggested a role for insulin in
the central regulation of energy homeostasis based on the
observation that insulin levels circulate in proportion to adi-
pose tissue in most mammals (97). They demonstrated that
intracerebroventricular insulin administration results in a dose-
dependent reduction in food intake and body weight. Follow-
ing the advent of gene targeting techniques, neuron-specific
deletion of insulin receptors (NIRKO mice) was found to lead to
increased body fat deposition and hypothalamic hypogonadism
(infertility due to reduced GnRH release) (13), confirming that
insulin sensing in the brain is required for normal reproduction.
These actions may be mediated by direct insulin action on
GnRH neurons or by altering input from secondary insulin
sensitive neurons. One critical, unsettled question is whether
GnRH neurons express insulin receptors (IRs) in vivo. To date,
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the only evidence supporting that assertion comes from con-
ditionally immortalized GnRH-expressing cell lines that have
been reported to be insulin responsive (78). Given the inherent
limitations of extrapolating data from cell lines to animals,
in vivo data must be obtained to settle this issue. While
standard approaches to this question are available, genetic
techniques now allow the targeted deletion of receptors from
specific neuronal subtypes. It is hoped that the phenotype of
mice lacking IR expression in GnRH neurons will soon be
reported.

Leptin. The cloning of the ob gene in 1994 by Friedman and
associates resulted in the discovery of another physiologically
important adiposity signal secreted by fat tissue: leptin (100).
Mice and humans lacking leptin (ob/ob mice) or the leptin
receptor (db/db mice) develop hyperphagic morbid obesity and
insulin resistant diabetes (22). Moreover, sufficient levels of
leptin are a prerequisite for successful reproduction. Leptin
administration blunts the fasting-induced suppression of LH
secretion and fertility (44, 58, 69, 70). In women with exercise-
or anorexia-induced amenorrhea, leptin treatment increases
pulse frequency and levels of LH, ovarian volume, number of
dominant follicles, and estradiol levels (64, 95). Furthermore,
ob/ob mice have low LH levels and are infertile, and leptin
administration, but not weight loss alone, restores their fertility
(5, 19, 68, 101). Expression of leptin receptor (LepR) in the
brain of db/db mice or mice otherwise null for LepRs restores
fertility completely in males and partially in females (26, 60).

These studies support a role for central LepRs in modulating
GnRH release. However, despite initial reports showing ex-
pression of LepRs in immortalized GnRH cell lines, it is now
recognized that GnRH neurons do not physiologically express
LepRs (14, 38, 49). Instead, leptin is believed to act indirectly
via interneurons impinging on GnRH-secreting cells in the
hypothalamus (24, 90), although the identity of such interneu-
rons is unclear. A better understanding of the neural circuitry
underlying leptin signaling in the hypothalamus is critical not
only for the advancement of our knowledge of the connection
between metabolism and reproduction but also for future
development of treatment strategies for hypothalamic hypo-
gonadism.

Leptin and Insulin Sensing in Hypothalamic Neurons

The role of the arcuate nucleus of the hypothalamus in
regulating energy balance is well established. The arcuate
nucleus contains proopiomelanocortin/cocaine- and amphet-
amine-regulated transcript (POMC/CART)-expressing neu-
rons, whose activation suppresses feeding. In contrast, the
activation of a second population of arcuate neurons, neu-
ropeptide Y/agouti-related protein (NPY/AgRP)-expressing
neurons, stimulates feeding (6, 33). The coordinated regu-
lation of these neurons and their downstream projections to
key brain regions contributes to control of energy balance.
These targets include the paraventricular nucleus of the
hypothalamus, the lateral hypothalamic area, and other au-
tonomic and neuroendocrine control sites (32).

IRs are expressed in the medial portion of the arcuate
nucleus where NPY/AgRP-expressing neurons are located (8).
Indeed, insulin affects the expression of NPY; in fasted ani-
mals, intracerebroventricular (icv) administration of insulin
decreases NPY mRNA in the arcuate nucleus and NPY peptide

in the paraventricular nucleus of the hypothalamus (79, 93).
Insulin-deficient diabetic rats show increased hypothalamic
levels of both NPY and its mRNA that are normalized by
systemic insulin therapy (1, 80). High numbers of IRs are also
found on POMC/CART neurons (9). Interestingly, no obvious
metabolic or reproductive phenotype was seen in mice lacking
IRs only in POMC neurons (59).

Although LepRs are expressed in many hypothalamic nuclei
(34, 36, 65), significant attention has been given to neurons
located in the arcuate nucleus. There, LepRs are expressed by
both NPY/AgRP and POMC/CART neurons (7, 20, 34) and are
required for maintaining a normal body weight (4, 67). It is
important to note that insulin and leptin share some, but not all,
overlapping intracellular signaling pathways and may thereby
exert similar effects. Much ongoing work is dedicated to
untangling the contribution of these pathways to the actions of
leptin and insulin (71, 75, 98).

Evidence is accumulating that leptin has key targets outside
the arcuate nucleus (47, 52). LepR is found in other hypotha-
lamic nuclei, including the dorsomedial subdivision of the
ventromedial nucleus (VMH), the caudal subdivision of the
dorsomedial nucleus (DMH), the premammillary ventral nu-
cleus (PMV), and, in a small extension, in the paraventricular
nucleus (34, 36, 65). Indeed, neurons expressing LepR in the
VMH also respond to glucose and insulin (15), but the path-
ways downstream of VMH neurons responsive to metabolic
signals are not yet identified. In addition, the DMH and the
PMV strongly innervate areas related to reproductive control,
including the anteroventral periventricular nucleus (AVPV)
and the medial preoptic area (16, 76, 88, 89). However,
whether these projections originate from neurons responsive to
leptin and are physiologically relevant to leptin action in
reproductive control remains unsettled.

Mediobasal Hypothalamic Circuits Linking Metabolic State
with Reproduction

Evidence suggests that the neurons involved in regulating
energy metabolism can communicate with the hypothalamic-
pituitary-gonadal (HPG) axis via interactions with GnRH neu-
rons. NPY fibers are intimately associated with the dendrites
and cell bodies of GnRH neurons in the medial preoptic area
(48), and NPY fibers in the median eminence may also act on
GnRH terminals (77). NPY neurons therefore have been con-
sidered good candidates to operate as neuroendocrine integra-
tors, linking perturbations in energy balance and alterations in
the activity of the reproductive axis. According to this model,
NPY neurons are activated under conditions of negative energy
balance, leading to an increase in NPY release from terminals
in the paraventricular nucleus and preoptic area. Increased
NPY release may then stimulate feeding behavior while inhib-
iting release of GnRH and activity in the pituitary-gonadal
axis. In support of this hypothesis, a suppression of basal LH
levels by fasting fails to occur in the NPY knockout female
(50). In addition, ob/ob mice that are also NPY deficient
display improved fertility compared with ob/ob controls (35).

However, pharmacological evidence in rats (23), rabbits
(56), and monkeys (96) provides a compelling case for the
existence of two mechanisms, one inhibitory and one stimula-
tory, through which endogenous NPY regulates the GnRH
pulse generator. In numerous species, NPY has negative effects
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on GnRH levels, pulse amplitude, and pulse frequency in an
environment of low estradiol and progesterone, such as in
unprimed, ovariectomized animals (3). In these animals, ste-
roid replacement switches the effect of NPY to a robust
positive one (10, 91). Thus, surprisingly, NPY appears to be
required for GnRH surge production; LH surges are attenuated
after NPY immunoneutralization or Y1 receptor blockade on
the day of proestrus (48, 53). In addition, NPY knockout
females show a 70% reduction in their LH surges (99). This
dual effect also explains why food deprivation initiated on the
day of estrus is much less effective in suppressing ovulation
than fasting begun on diestrus, when estrogen levels are low
(12). Exciting new findings have begun to shed light on this
paradox. In hypothalamic cell lines, the ratio of estrogen
receptor-� (ER�) to -� (ER�) regulates the expression of NPY
gene in response to estrogen treatment. Whereas ER� favors
the suppression of NPY gene, ER� stimulates peptide expres-
sion (91). The critical next step is to determine whether the
ratio of ER subtypes in the hypothalamus varies across the
estrous cycle. Alternatively, GABA release by a subpopulation
of NPY neurons (51) may affect GnRH secretion, as all GnRH
neurons express GABAA receptors (21, 72). Interestingly,
GABA release can hyperpolarize or depolarize GnRH neurons
(30, 66) in agreement with opposing NPY effects on LH
secretion. The origin of the GABAergic inputs to GnRH
neurons is not known, and therefore further studies are neces-
sary in order to explore NPY/GABA interaction modulating
GnRH secretion.

POMC/CART neurons may also be involved in conveying
metabolic status to GnRH neurons. POMC/CART-producing
neurons in the arcuate nucleus project to the medial preoptic
area, and terminals of POMC products (�-endorphin and
�-MSH) and CART make apparent synaptic contact with
GnRH-immunoreactive cells (63, 76), although the expression
of melanocortin and/or opioid receptors in GnRH cell bodies is
not well established. However, the various POMC gene prod-
ucts have differential effects on the reproductive axis; for
example, �-MSH reduces food consumption and stimulates
lordosis behavior in female rats (45, 81), whereas �-endorphin
stimulates food consumption and inhibits GnRH/LH secretion
(43, 62, 94). Further studies are needed to elucidate the precise
role of these neuronal populations.

Finally, the overlapping intracellular signaling pathways of
leptin and insulin raise the question of whether joint signaling
by insulin and leptin in POMC and NPY cells contributes to the
control of GnRH release. Although genetically ablating recep-
tors for leptin or insulin in NPY or POMC neurons results in no
obvious reproductive phenotypes (4, 59), these results may
underrepresent the combined contribution of these adiposity
signals to the maintenance of fertility. Double-knockout stud-
ies are needed to address this question.

Kisspeptin

Recently, the description of G protein-coupled receptor-54
(GPR54) and the cognate ligands, kisspeptins, has brought an
avalanche of new findings into the reproductive field (37, 54,
83). KiSS-1 is expressed by neurons located in several hypo-
thalamic nuclei, including the AVPV, a key site for the regu-
lation of gonadotropin secretion, and the arcuate nucleus (46).
The GPR54 receptor is expressed by GnRH neurons, and its

mutation causes hypogonadotropic hypogonadism in humans
and mice (25, 27, 42, 61, 82). Fasting causes a reduction in the
amount of KiSS-1 mRNA (17), which precedes the fasting-
induced decline of GnRH. In the mouse, icv administration of
kisspeptin evokes LH and FSH secretion at remarkably low
doses (46).

In both the AVPV and arcuate nucleus, KiSS-1 is regulated
by sex steroids (83–85). Estrogen and androgen receptors
(ER� and AR, respectively) are found in a high percentage of
KiSS-1-expressing neurons, and estradiol and testosterone in-
crease KiSS-1 expression in the AVPV and decrease KiSS-1
expression in the arcuate nucleus. It is believed that kisspeptin
has distinct actions on GnRH release depending on the steroid
hormone milieu, mediating the negative feedback of sex ste-
roids on GnRH secretion via neurons in the arcuate nucleus and
the positive feedback of sex steroids via AVPV neurons (85).
However, the requirement for AR and ER� in mediating the
feedback effects of sex steroids on Kiss-1 expression remains
to be confirmed.

Kisspeptin appears to play a role in the reproductive effects
of leptin. LepRs have been found in over 40% of Kiss-1
neurons in the arcuate nucleus. Compared with wild-type mice,
obese ob/ob male mice show decreased expression of KiSS-1
in the arcuate nucleus, which is restored by leptin treatment
(85). In a recent study, investigators showed that in diabetic
rats KiSS-1 mRNA is decreased in the hypothalamus. These
animals exhibit low circulating levels of leptin, insulin, and LH
(18). Administration of kisspeptin restored LH and testosterone
secretion and icv leptin, but not insulin, and normalized KiSS-1
mRNA levels in the hypothalamus as well as circulating levels
of LH. Although KiSS-1 and LepR are coexpressed in the
arcuate nucleus, the specific hypothalamic sites where leptin
acts to stimulate KiSS-1 in this paradigm are not known.

Thus far, the results are consistent with a model whereby
leptin and perhaps other adiposity and satiety factors stimulate
KiSS-1 expression, triggering production of kisspeptin and
stimulation of GnRH release. It is tempting to speculate that

Fig. 1. Schematic representation of candidate brain pathways mediating leptin
and insulin actions in reproductive control. Leptin and insulin receptors are
distributed in a variety of brain nuclei, but the connections with areas related
to reproductive control including the anteroventral periventricular nucleus
(AVPV) and GnRH neurons are unknown. Moreover, although the arcuate
nucleus neurons expressing proopiomelanocortin (POMC) or neuropeptide Y
(NPY) have been extensively investigated, their projections to the AVPV are
not described, and the innervation of GnRH neurons is still controversial. A
few studies have also suggested the direct action of insulin in GnRH neurons,
but these findings need to be replicated. DMH, dorsomedial nucleus; PMV,
premammillary ventral nucleus.
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reproductive deficits associated with leptin-deficient states may
be attributable to diminished expression patterns of KiSS-1 or
its receptor. Nevertheless, whether leptin is solely acting on
KiSS-1 neurons in the central control of GnRH or whether
additional peripheral regulators cooperate with leptin in the
control of KiSS-1 for the integration of energy balance remains
to be elucidated. The use of genetic mouse models that allow
the deletion or reactivation of KiSS-1 gene in specific neurons
will provide crucial access to this pathway.

Summary

We have entered an exciting era for the study of metabolic
regulation of reproductive function. Our knowledge of the
hypothalamic circuitry involved in monitoring energy balance
and providing input to GnRH neurons continues to expand
rapidly. We have discussed only a few of the neuropeptides
and hormones involved, and no doubt more are waiting to be
discovered. A major goal of future research should therefore be
not only to discover individual players communicating energy
status to the reproductive axis but also to understand how each
fits within the neuronal network connecting these two critical
systems. Many relationships remain to be elucidated (Fig. 1).
Pursuit of these questions will yield a greater understanding of
the central control of reproduction and holds out the hope of
addressing the clinical impact of impaired fertility and steroid
production due to metabolic causes.
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