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Abstract: Neurons that express pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript 
(CART) in the arcuate nucleus of the hypothalamus suppress feeding and increase energy expenditure in response to cir-
culating adiposity signals such as leptin. Alterations in gene expression may lead to long term modification of this circuit 
and alterations in body weight. Therefore, understanding how gene expression in these neurons is controlled is crucial to 
forming a complete picture of the central management of energy balance. This review outlines the heterogeneity of arcu-
ate POMC/CART neurons, describes our current understanding of CART and POMC gene transcription in these neurons, 
and suggests future directions for extending the field. 
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INTRODUCTION 

 The arcuate nucleus (ARC) of the hypothalamus plays a 
key role in the control of food intake, containing opposing 
orexigenic and anorexigenic neuronal circuits. The latter are 
composed of neurons that express pro-opiomelanocortin 
(POMC) and cocaine- and amphetamine-regulated transcript 
(CART). When activated, POMC/CART neurons signal to 
downstream neuronal pathways that suppress feeding and 
increase energy expenditure. Circulating adiposity signals 
such as leptin modulate POMC/CART neuronal activity and 
alter gene transcription in these neurons to coordinate energy 
homeostasis. 
 Leptin, a product of the OB (or LEP) gene, produced 
primarily in adipose tissue, plays an important role in food 
intake and body weight regulation. Defective leptin signaling 
due to either leptin deficiency, as in ob/ob mice, or mutation 
in the leptin receptor, as in db/db mice, leads to development 
of obesity [1-5]. Binding of leptin to its receptor induces 
activation of several signaling pathways, including the Janus
kinase / Signal transducer and activator of transcription 
(JAK/STAT), Mitogen activated kinase-like protein 
(MAPK), Insulin responsive substrate 1 (IRS1), and Sup-
pressor of cytokine signaling 3 (SOCS3) pathways, which 
mediate its effects. The JAK/STAT pathway serves as the 
primary leptin signal transduction pathway in the hypothala-
mus. In this signaling cascade, Jak2 activation leads to phos-
phorylation of the STAT3 transcription factor, which dimer-
izes and translocates to the nucleus where it regulates gene 
transcription [6, 7]. Alternatively, leptin signaling can alter 
neuronal activity without altering gene transcription though 
alternative pathways such as IRS- phosphoinositide 3-kinase 
(PI3K) signaling [8-10]. 
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 We have recently demonstrated that transient changes in 
the activity of POMC/CART neurons do not necessarily lead 
to long term alterations in body weight [9]. Nevertheless, 
permanent alteration of gene expression induced by adipos-
ity signals may lead to long-term modification of the func-
tion of this circuit. Therefore, understanding how gene ex-
pression in these neurons is controlled is crucial to forming a 
complete picture of the central management of energy bal-
ance. This review will describe the current understanding of 
transcriptional control in these neurons and suggest future 
directions for extending the field.  

COMPLEXITY IN THE NEURONAL POPULATION 

 POMC/CART neurons are found in the retrochiasmatic 
area (RCh) and throughout the rostrocaudal span of the ARC 
continuing caudally into the posterior periventricular nucleus 
(PVN) [11-18]. While these POMC/CART neurons are often 
referred to as being part of a single circuit, it is becoming 
clear that the population contains a significant amount of 
heterogeneity. To begin with, these neurons do not all pro-
ject to the same downstream regions [19-22], suggesting that 
they serve different functions. In rats, both the retina and the 
suprachiasmatic nucleus project to the RCh [23], which in 
turn projects to the intergeniculate leaflet of the thalamus, 
suggesting involvement in the circadian system [24]. Addi-
tionally, neurons of the lateral RCh that express 
POMC/CART primarily project caudally to autonomic areas, 
including the dorsal vagal complex and the intermediolateral 
cell column (IML) [19, 22, 25]. On the other hand, the ARC 
projects extensively to the ventral part of the lateral septum, 
the bed nuclei of the stria terminalis (all subregions), the 
medial and periventricular parts of the preoptic area, the 
parvicellular parts of the PVN, the dorsomedial nucleus 
(DMN), the zona incerta and the lateral hypothalamic area 
(LHA) [26, 27]. Specifically, the more caudal POMC/CART 
cells project largely to hypothalamic centers like the PVN 
and to the external zone of the median eminence and the 
LHA [20, 21]. It is important to note that most of this ana-
tomical data were gathered from the examination of rat 
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brains, and may or may not be directly applicable to mouse 
models, which are the subject of more recent genetic studies. 
As one example, POMC neurons are located both medially 
and ventrally in mouse ARC, in contrast to a predominantly 
lateral position in rat ARC. [8] 
 In addition to their projecting to different areas, subtypes 
can be identified within the POMC/CART population based 
on neurotransmitter or receptor expression. For instance, 
subsets of POMC neurons have been found to contain glu-
tamate or gamma-aminobutyric acid (GABA) [28, 29]. In 
addition, besides the co-localization between CART and 
POMC, small fractions of CART neurons in the Arc have 
also been demonstrated to express dynorphin, neurotensin, or 
thyrotropin-releasing hormone mRNA [30]. Functional 
leptin receptors are found on approximately 35% of all 
POMC/CART neurons from the Rch and ARC of the me-
diobasal hypothalamus [31]. While leptin-induced excitation 
is observed throughout the rostrocaudal levels of the RCA 
and ARC, Williams and colleagues have recently shown that 
a higher percentage of leptin-excited POMC cells exist in the 
lateral division of the RCh and medial group of POMC cells 
in the Arc, such that 40-70% of POMC cells are excited by 
leptin in those regions [31]. This distribution correlates well 
with the involvement of LHA and PVN melanocortin-4 
receptors in the acute effects of leptin on energy balance (see 
below). On the other hand, insulin-inhibited POMC cells are 
largely localized to the medial divisions of the RCh and ros-
tromedial areas of the ARC, in agreement with the observed 
distribution of the insulin receptor. This pattern of insulin-
inhibited POMC cells mirrors the location of “autonomic” 
POMC cells projecting to the dorsal vagal complex and IML. 
These findings suggest a segregation of insulin and leptin 
responses in arcuate POMC cells and a spatial separation of 
their downstream effects on intracellular signaling [31]. 
Thus, the receptor types expressed in POMC/CART neurons 
determine both the active signaling cascades and the genes 
transcribed in those neurons. 

CART  

 The human CART prepropeptide gene encompasses ap-
proximately 1.9 kb and is composed of three exons and two 
introns [32]. Unlike humans, rodents have alternative splic-
ing within exon 2 resulting in the production of two precur-
sor proteins, one long (129 amino acids) and one short (116 
amino acids) [11]. In humans, however, only the 116 amino 
acid (aa) polypeptide is found (hsCART). Newly synthesized 
prepro-CART molecules have a 27aa N-terminal hydropho-
bic signal sequence, which is deleted upon entry into the 
secretory pathway [11, 32]. These proteins are then proc-
essed by prohormone convertase (PC) while transiting 
through the Golgi complex to their final state within mature 
secretory granules [33]. 
 Studies of human populations have implicated CART in 
the regulation of food intake. Obese members of a family in 
Italy had a missense mutation (Leu34Phe) in CART resulting 
in CART peptide deficiency due to mis-sorting, poor proc-
essing and secretion [34, 35]. Additional studies have linked 
polymorphisms in the 5' region of the CART gene with obe-
sity [36, 37]. Complimentary findings have been produced 
through rodent studies [36]. In rats, CART central admini-
stration dose-dependently reduces food intake [38], and anti-

bodies directed against CART peptide administered icv in-
crease feeding [14]. Furthermore, CART mRNA in the ARC 
is decreased in food-deprived animals [14], and CART 
mRNA centrally delivered through a viral vector suppressed 
weight gain in rats on a high fat diet [39]. Finally, CART 
null mice develop increased food intake and obesity while on 
a high fat diet [40]. 
 CART expression is also responsive to leptin levels. 
Mice lacking endogenous leptin or leptin receptors show 
reduced CART expression, while CART mRNA levels in the 
rat ARC are increased by administration of leptin [41]. In-
deed, leptin receptors are found on CART-containing neu-
rons in the ARC and other regions of the hypothalamus [18]. 
Interestingly, glucocorticoids may modulate the interaction 
between CART and leptin since CART expression is not 
changed by fasting or refeeding after adrenalectomy [42]. 

CART GENE TRANSCRIPTION 

 The CART promoter region contains several predicted 
binding sites for transcription factors such as CRE-binding 
protein (CREB), cJun, SP1, AP2 and STAT protein that are 
conserved across rats, mice and humans with the potential to 
regulate basal and stimulus-induced CART mRNA expres-
sion [43-47]. However, the number of studies investigating 
the action of these transcription factors in the control of hy-
pothalamic CART gene expression in relation to energy ho-
meostasis is limited. Investigation has shown that CREB 
protein affects CART gene transcription regulation [44-46, 
48] by complexing with c-Jun, CREM, ATF-1, NFkB and 
CBP [49-55], and it has been found to mediate a forskolin-
induced increase in CART mRNA levels via the protein 
kinase A (PKA) pathway in the rat nucleus accumbens [56]. 
It remains to be determined whether this pathway plays a 
major role in the response of POMC/CART neurons to al-
tered energy availability.  

 The effect of lipopolysaccharide (LPS) on CART tran-
scription has been investigated. LPS can induce anorexia by 
activating inflammatory cytokines [57] like interleukin-1 
(IL-1), interleukin-6 (IL-6) and tumor necrosis factor 
(TNF- ). These cytokines may activate the AP1 family of 
transcription factors, thus altering CART mRNA expression. 
Intracerebroventricular or intraperitoneal administration of 
LPS causes a significant increase in arcuate CART mRNA 
levels, possibly due to an accompanying increase in corticos-
terone levels [58, 59]. Indeed, acute administration of corti-
costerone results in a more than 30% increase in the expres-
sion of CART in the nucleus accumbens [60]. Furthermore, 
adrenalectomized animals show a reduction in CART 
mRNA in the ARC that is reversed by hormone replacement 
[61, 62]. Thus, alterations in body weight as part of adapta-
tion to stressors may be mediated by changes in CART gene 
transcription in the ARC. 

 The role of additional transcription factors in the regula-
tion of CART gene expression in POMC/CART neurons 
would bear investigation. In particular, the existence of a 
STAT-binding motif in the CART promoter presents the 
very interesting possibility that the CART gene could be 
regulated directly by leptin’s induction of the JAK/STAT 
pathway. The presence of an overlapping STAT/CRE/AP1 
site in the CART promoter may indicate that STAT effects 
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on gene transcription can also be modified by other signaling 
pathways [44].  

POMC 

 POMC is a polypeptide precursor that, once translated, is 
extensively modified to produce smaller, biologically-active 
fragments. The POMC gene consists of 3 exons covering 
7.8kb in length. Although all 3 exons are transcribed, exon 1 
contains only untranslated sequences, part of exon 2 codes 
for signaling peptide and the initial amino acids of the N-
terminal peptide, and exon 3 codes for most of the translated 
RNA. Once translated, the peptides translocates through the 
membrane of the rough endoplasmic reticulum. It is then 
cleaved and trafficked as a secreted protein through the 
Golgi complex and eventually the secretory granules.  

 During trafficking, the POMC protein undergoes a series 
of posttranslational modifications through the actions of 
PC1/3 and PC2. POMC is partially cleaved to generate -
lipotrophin and pro-adrenocorticotropic hormone (ACTH). 

-lipotrophin hormone (LPH) is then cleaved to form -LPH 
and -endorphin and, in humans but not mice, -LPH is 
cleaved in turn to generate -melanocyte stimulating hor-
mone (MSH) [63, 64]. In the ARC [65-68], ProACTH is 
further cleaved by prohormone convertase 1/3 (PC1/3) to 
generate an N-terminal peptide and ACTH. In humans, three 
forms of -MSH are formed by additional cleavage of N-
terminal POMC: 1-MSH, 2-MSH (not found in mice), and 

3-MSH. ACTH is further cleaved to ultimately generate -
MSH and corticotrophin-like intermediate lobe peptide 
(CLIP). ACTH and the family of MSH peptides are known 
as melanocortins. The melanocortins mediate their effects in 
the CNS through two related G protein-coupled receptors, 
MC3R and MC4R. 

 Melancortins play an important role in the control of food 
intake and energy expenditure. Null POMC alleles result in 
obesity in both mice and humans [69]. In Pomc null mice, -
MSH was able to reduce food intake and body weight when 
centrally administered over a 3 day period, while ß-MSH, -
LPH, and 3- and 2-MSH did not [70]. Indeed, -MSH 
production is reduced during fasting [70]. In addition, defi-
ciency in PC1/3, the enzyme required for -MSH produc-
tion, leads to increased body weight in humans [71, 72] and 
mice [73].  

 The interpretation of the mouse studies above in regards 
to human physiology is complicated by the fact that rodents 
lack the N-terminal cleavage site required to produce -
MSH, and it is therefore not an endogenous ligand in mice. 
Indeed, -MSH appears to play an important role in body 
weight regulation in humans. Lee and colleagues [74] found 
that a missense mutation in the region encoding  -MSH co-
segregated with obesity, and the mutation was shown to im-
pair the ability of -MSH to activate MC4R.   

 In contrast to the melanocortins, another product of the 
POMC gene, -endorphin, a -opioid agonist, inhibits 
POMC cells [8, 75, 76] and increases food intake in rodents 
[77, 78]. Opioid antagonists increase activation of POMC 
neurons in the ARC, probably by removing tonic -
endorphin-mediated autoinhibition of POMC neurons [79]. 

POMC GENE TRANSCRIPTION 

 The relationship between POMC gene transcription and 
the control of energy balance has been extensively studied. 
In particular, the circulating adiposity factor leptin has been 
shown to modify POMC gene expression. For example, low 
leptin levels in fasted or ob/ob mice inhibit ARC POMC 
gene expression, [80] which can be reversed by leptin ad-
ministration [81-83]. Evidence suggests that JAK/STAT 
signaling activated by leptin can directly modify POMC 
transcription through interaction with its promoter. The distal 
5' sequence of the POMC gene, and in particular two re-
gions, designated neuronal POMC enhancer 1 and 2 (nPE1 
and nPE2), between 13 and 2 kb target gene expression to 
ARC neurons [84]. The former sequence contains a canoni-
cal STAT3-responsive element binding site. An additional, 
noncanonical STAT binding site has been found in the 
proximal enhancer region. STAT3 can increase POMC tran-
scription by interacting with the site in this promoter region 
[84].  
 The Jak/STAT signaling pathway activated by leptin also 
co-ordinately regulates prohormone convertase 1/3 (PC1/3), 
which is crucial to POMC processing [85-87]. Food restric-
tion suppresses PC1/3 levels and thus POMC-derived pep-
tides such as -MSH in the ARC, and administration of 
leptin reverses this response. [81, 88-90]. The human and 
mouse PC1/3 promoter share two putative STAT3 and E-box 
motifs [91, 92], although a third leptin-responsive STAT3 
binding site is present in the human promoter [85]. These 
STAT sites have been implicated in leptin-mediated expres-
sion of PC1/3. Thus, leptin-initiated Jak/Stat signaling acts at 
multiple levels to reduce the production of POMC-derived 
peptides. 
  Downstream targets of another leptin-activated pathway 
also regulate POMC gene expression. The PI3K/Akt path-
way has been implicated in the regulation of food intake and 
energy homeostasis by hypothalamic neurons [93-96]. Inhi-
bition of PI3K attenuates the suppression of food intake by 
insulin as well as leptin [95, 96]. One downstream target of 
Akt is the forkhead transcriptional factor subfamily forkhead 
box O1 (FoxO1 or Fkhr) [97]. Activation of Akt phosphory-
lates FoxO1 and results in its exclusion from the nucleus and 
proteosomal degradation [97, 98], thereby inhibiting its ac-
tion. Furthermore, expression of FOXO1 in the hypothala-
mus is decreased by insulin or leptin administration [97] in a 
PI3K dependent manner. FoxO1 has been reported to directly 
control POMC gene expression [83, 99], leading to a reduc-
tion in POMC mRNA. Interestingly, FoxO1 and STAT3 
bind to adjacent sites in the promoter regions of POMC to 
regulate its expression [100], suggesting possible interaction 
between these two signaling pathways. 
 Another transcription factor that has been demonstrated 
to affect posttranslational processing of POMC products is 
nescient helix loop helix 2 (Nhlh2). Nhlh2 is a basic helix-
loop-helix transcription factor that affects body weight 
through control of physical activity levels (3,7). Nhlh2 
knockout (N2KO) mice display adult-onset obesity [101] and 
reduced production of POMC-derived peptides as a result of 
reduced POMC peptide processing of POMC. Indeed, a sig-
nificant reduction in both PC1/3 and PC2 mRNA was found 
in the ARC of the N2KO mice [102]. Evidence suggests that 
Nhlh2 and leptin act coordinately to induce high levels of 
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PC1/3 gene transcription. STAT3 and Nhlh2 interact as a 
heterodimer on the PC1/3 promoter to mediate leptin-
stimulated PC1/3 expression [103]. Thus, Nhlh2 acts coop-
eratively with STAT3 to induce PC1/3 expression following 
leptin stimulation.  

 Both androgens and estrogens have been found to affect 
POMC gene expression [104, 105]. For example, ovariec-
tomy decreases POMC mRNA in the ARC [106], and this 
regulation is reversed by a short term replacement of estra-
diol [106]. Such nuclear steroid hormone receptors regulate 
the transcription of target genes by interacting with DNA 
response elements. Indeed, lower POMC levels are observed 
in mice lacking estrogen receptor  (ER ) [107, 108]. ER
mediates the classic transcriptional effects of estrogen, but 
can also be transcriptionally activated in a ligand-
independent manner [109]. Leptin has been shown to acti-
vate ER  via the mitogen-activated protein kinase (MAPK) 
pathway in vitro in a ligand-independent manner [109]. 
These findings have implications for the widespread sexual 
dimorphism seen in the body weight phenotype of many 
transgenic studies targeting the POMC neuron [110-113].  

 Finally, POMC expression has been shown to be altered 
by 5-hydroxytryptamine (5-HT) signaling. POMC neurons in 
the ARC receive input from 5-HT-immunoreactive nerve 
terminals [114], and up to 80% of alpha-MSH expressing 
POMC neurons in the ARC express 5-HT2C receptors, with 
co-expression being greatest in the caudal ARC [115]. 5-
HT2CR null mice develop hyperphagia, hyperactivity, and 
obesity and show attenuated responses to anorexigenic 5-HT 
drugs, which is normalized by re-expression of the receptor 
in POMC neurons alone [116]. Notably, infusion of a 5-
HT2C receptor agonist significantly decreased POMC 
mRNA levels in both diet-induced obese and leptin deficient 
mice [117, 118]. The mechanism for this suppression re-
mains to be characterized.  

CLOSING REMARKS 

 Given that body weight control requires a coordinated 
modulation of food intake and energy expenditure over an 
extended time horizon, the gene expression of neurons regu-
lating these functions must be carefully controlled. As this 
review has shown, our knowledge of the control of gene ex-
pression in POMC/CART neurons is incomplete and has 
tended to focus on well understood adiposity signals and 
transcription factors. No doubt far more complexity remains 
to be uncovered. In addition, however, studies of epigenetics 
as a method of long-term modulation of gene expression in 
these neurons are needed. In other tissues, the level of 
POMC expression is greatly influenced by the methylation 
pattern of the 5’ promoter [119]. Should a similar process 
occur in POMC/CART neurons, the significance for the pro-
gramming of body weight regulation in individuals and/or 
families could be profound. Therefore, the control of gene 
expression in POMC/CART neurons will continue be a criti-
cal area of investigation with important implications for the 
treatment of obesity in humans. 
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