Regulation of Hypothalamic Neuropeptide Y Y1 Receptor Gene Expression during the Estrous Cycle: Role of Progesterone Receptors*

MING XU, JANICE H. URBAN, JENNIFER W. HILL, AND JON E. LEVINE

Department of Neurobiology and Physiology, Northwestern University (M.X., J.W.H., J.E.L.), Evanston, Illinois 60208; and Department of Physiology and Biophysics, Finch University Health Sciences/Chicago Medical School (J.H.U.), North Chicago, Illinois 60064

ABSTRACT

Neuropeptide Y (NPY) stimulates the release of GnRH in an estrogen (E2)-dependent manner, which is important in generating preovulatory GnRH surges. We tested the hypothesis that E2 up-regulates NPY's actions by stimulating NPY Y1 receptor (Y1r) gene expression through a mechanism mediated by E2's ability to induce progesterone (P) receptors (PRs). In initial experiments, a specific Y1r antagonist BIBP3226 was used to confirm the involvement of Y1r in the stimulatory effects of NPY on in vivo GnRH release. Hypothalamic Y1r messenger RNA (mRNA) levels were then measured using competitive RT-PCR and were found to be significantly increased at 1000, 1200, and 1400 h on proestrus compared with other times of the day or cycle stage. Ovariectomy eliminated these increases, and E2 treatment restored them. Additional P treatment produced even larger increases in Y1r mRNA levels. To assess the role of PRs in stimulating Y1r expression, proestrous rats were treated with PR antagonist or oil vehicle and killed at 1200 h. Treatment with PR antagonist completely blocked the proestrous rise in Y1r gene expression. In parallel experiments, the same in vivo PR antagonist treatments also blocked NPY stimulation of GnRH release in vitro. Together our findings reveal that 1) Y1r mRNA levels are increased during the late morning and afternoon of proestrus; 2) Y1r mRNA levels are similarly increased by E2, and to an even greater extent by additional P; and 3) PR antagonism blocks both increased Y1r mRNA and induction of GnRH responsiveness to NPY. These observations support the idea that E2 up-regulates GnRH neuronal responses to NPY through stimulation of Y1r gene expression, and that E2's actions are mediated by the induction and subsequent activation of PRs. (Endocrinology 141: 3319–3327, 2000)

Neuropeptide Y (NPY) is critically important in the neural regulation of reproductive hormone secretions (1). The peptide is released at hypothalamic synapses to regulate the neurosecretion of GnRH (2–4) and into the hypothalamic portal vasculature to modulate GnRH-induced gonadotropin secretion (5, 6). Neuropeptide Y's facilitating actions at both sites are important in mediating ovarian feedback signals for stimulating preovulatory GnRH and gonadotropin surges (5, 7, 8).

Within the hypothalamus, there are two mechanisms through which NPY may augment GnRH release during the initiation of midcycle surges. One is through enhancement of NPY production and secretion, as evidenced by findings that NPY gene expression (9, 10), NPY concentrations (11), and NPY release (12) are increased during the initiation of LH surges. A second mechanism involves a major up-regulation of tissue responsiveness to NPY, as stimulatory effects of NPY on GnRH release are dramatically increased just before GnRH surges (4). Cellular mechanisms mediating this up-regulatory process are not known, although they clearly involve some action of estrogen (E2) on hypothalamic neurons (2, 13, 14).

These studies were designed to ascertain the cellular mechanisms through which E2 up-regulates NPY's actions on GnRH release. Specifically, we tested whether E2's up-regulatory effects are mediated by its ability to augment NPY receptor gene expression. Pharmacological studies implicate the NPY Y1 receptor (Y1r) subtype in stimulation of GnRH release by NPY (15, 16). The Y1r is a G protein-coupled receptor expressed in the arcuate and periventricular nuclei, preoptic area, and other hypothalamic sites known to be important in regulating GnRH neurosecretion (17). The highest concentrations of Y1r messenger RNA (mRNA) are found in the arcuate nucleus (18), where E2-responsive, progesterone (P) receptor (PR)-containing neurons are innervated by NPY neurons (19, 20). We therefore examined regulation of Y1r gene expression in tissues, including all of the foregoing hypothalamic areas, focusing on possible E2 actions during the preovulatory period.

These studies also examined specific intracellular pathways through which E2 may regulate NPY Y1r gene expression. E2 treatments stimulate expression of PRs in brain (21), where they may subsequently be activated by P itself or by intracellular messengers derived from neurotransmitter signals initiated at the neuronal membrane (22, 23). In either case, viz. in liganded or unliganded states, activation of PRs previously induced by E2 appears to be integral to neuroendocrine processes leading to gonadotropin surges, as shown by findings that E2 treatments fail to induce LH surges in PR-knockout (PRKO) mice (24). We therefore considered the possibility that any actions of E2 on Y1r expression and GnRH responsiveness to NPY may be mediated by activation of E2-induced PRs.

Received January 19, 2000.
Address all correspondence and requests for reprints to: Jon E. Levine, Ph.D., Department of Neurobiology and Physiology, 2153 North Campus Drive, Evanston, Illinois 60208. E-mail: jlevine@nwu.edu.
* This work was supported by NIH Grants R01-HD-20677, P30-HD-28048, and P01-HD-21921.
Materials and Methods

Animals

Female Sprague Dawley rats were obtained from Charles River Laboratories, Inc. (Portage, WI) at 8–10 weeks of age and were maintained in temperature-controlled (23–25°C) and light-controlled (14-h light/10-h dark cycle, lights on at 0700 h) rooms. Animals were fed standard laboratory rat chow and had access to water ad libitum. The estrous cycles of the rats were monitored via examination of vaginal histology. Rats displaying at least two consecutive 4-day estrous cycles were used in the experiments.

Reagents

Rat NPY and BIBP3226 were purchased from Peninsula Laboratories, Inc. (Belmont, CA), and medium 199 (without phenol red), bacitracin, gentamicin, and synthetic oligonucleotides were obtained from Life Technologies, Inc. (Grand Island, NY). Benzyl benzoate, sesame oil, estradiol benzoate (E2B), and P were purchased from Sigma (St. Louis, MO). The PR antagonists, RU486 and ZK98299, were gifts from Roussel-UCLAF (Romainville, France) and Dr. Klaus Stoeckmann (Schering AG, Berlin, Germany), respectively. Taq DNA polymerase was purchased from Fisher Scientific (Chicago, IL), and T4 DNA ligase, HindIII, T7 RNA polymerase, RQ1 deoxyribonuclease 1 (DNase I), deoxy(d)-NTPs, RNasin, and AMV-RT were supplied by Promega Corp. (Madison, WI).

Other suppliers included BIO-101 (La Jolla, CA) for the Genencin SPIN DNA isolation kit, Invitrogen (Carlsbad, CA) for the TA cloning kit (including pCRII vector), NEN Life Science Products (Boston, MA) for [α-32P]dATP, and Amersham Pharmacia Biotech (Arlington Heights, IL) for Sequenase Kit 2.1.

Tissue superfusion

For superfusion experiments, tissues were obtained from female rats as previously described (4). At 1400 h on the afternoon of proestrus, rats were decapitated, and tissues containing median eminence and arcuate nucleus (ME-ARC) were quickly dissected away from the brain and placed into superfusion chambers (Brandel 6000 superfusion apparatus, Brandel, Gaithersburg, MD) containing 300 μl superfusion medium. The superfusion medium consisted of medium 199 supplemented with 1.25 g/liter bacitracin, 0.003% BSA, and 20 mg/liter gentamicin and was equilibrated with 5% CO2/95% O2 before use. The medium was pumped through the warmed superfusion chamber (37°C) at a rate of 7 ml/h. In each experiment, the tissues were allowed to equilibrate in the system for 45 min, and thereafter continuous superfusate fractions were collected over 8-9 min intervals for a total of 3 h. NPY challenges were administered after a 45-min baseline collection period, and consisted of an 80-min infusion of 10−7 m NPY in superfusion medium. This concentration of NPY was chosen as an intermediate one based upon previous in vitro experiments that examined the effects of NPY on the ME (4, 25) and immortalized GnRH-producing neurons in culture (16). Control treatments consisted of infusions of medium alone. After NPY or BIBP3226 without NPY challenge.

Measurement of hypothalamic Y1r mRNA levels by competitive RT-PCR

A competitive RT-PCR protocol (29, 30) was devised to quantify hypothalamic NPY Y1r mRNA levels. The competitive RT-PCR method we used was found to measure accurately as little as 25 attomoles (amol) Y1r mRNA in test samples.

RNA preparation. Animals were decapitated at scheduled time points, and hypothalamic tissue was quickly removed and placed on dry ice. Each excised tissue contained the mediobasal hypothalamus and preoptic area. Tissues were stored at −70°C until RNA extraction and RT-PCR procedures. For extraction of RNA, tissues were homogenized in Tri-Reagent using a Polytron homogenizer (Brinkmann Kinematica, Westbury, NY), and RNA was subsequently extracted by phenol/chloroform according to the Tri-Reagent manufacturer’s protocol. All RNA samples were treated with RQI DNase I, and a RT-PCR test was performed to ensure that the RNA samples were of good integrity and were free of DNA contamination. RNA samples were stored at −70°C before use.

Preparation of competitor RNA (cRNA). The cRNA used as competitive standard was synthesized using Y1r DNA encoding the intron region and was 546 bp as opposed to the 436 bases of the corresponding region of Y1r mRNA (Fig. 1A). Rat DNA was extracted from rat tissue with Tri-Reagent and purified with phenol/chloroform. The possible existence of alternative forms of NPY Y1r mRNA transcripts was taken into consideration when designing primers for the PCR protocol. In the mouse, two isoforms of Y1r are generated by alternative splicing which reflect the overall mRNA levels of functional Y1r transcripts, including any possible corresponding alternative rat Y1r mRNA transcripts. According to known NPY Y1r gene sequences (33–36), primers were composed as follows: sense primer, ATC ATA CCA AGC TGT CTT ACA (as depicted as Y1rE in Fig. 1A); and antisense primer, ATA GTA TGC TAA TCC TCG TGC TC (shown as Y1rF in Fig. 1A). The primers Y1rE and Y1rF spanned the intron existing between exon 2 and exon 3 region of the Y1r gene, so that the RT-PCR product would reflect the overall mRNA levels of functional Y1r transcripts, including any possible corresponding alternative rat Y1r mRNA transcripts. In our experiment the primers for RT-PCR were designed according to the sequence spanning the exon 2 and exon 3 region of the Y1r gene, so that the RT-PCR product would reflect the overall mRNA levels of functional Y1r transcripts, including any possible corresponding alternative rat Y1r mRNA transcripts. Preparation of competitor RNA (cRNA). The cRNA used as competitive standard was synthesized using Y1r DNA encoding the intron region and was 546 bp as opposed to the 436 bases of the corresponding region of Y1r mRNA (Fig. 1A). Rat DNA was extracted from rat tissue with Tri-Reagent and purified with phenol/chloroform. The possible existence of alternative forms of NPY Y1r mRNA transcripts was taken into consideration when designing primers for the PCR protocol. In the mouse, two isoforms of Y1r are generated by alternative splicing which reflect the overall mRNA levels of functional Y1r transcripts, including any possible corresponding alternative rat Y1r mRNA transcripts. According to known NPY Y1r gene sequences (33–36), primers were composed as follows: sense primer, ATC ATA CCA AGC TGT CTT ACA (as depicted as Y1rE in Fig. 1A); and antisense primer, ATA GTA TGC TAA TCC TCG TGC TC (shown as Y1rF in Fig. 1A). The primers Y1rE and Y1rF spanned the intron existing between exon 2 and exon 3 of the NPY Y1r gene. PCR amplification of the product was performed with 50 pmol of each primer and 50 pmol of RNA template (prepared at 95°C for 5 min, then 93°C for 1 min, 65°C for 2 min, 72°C for 2 min, 30 cycles). The PCR product was separated on a 1% agarose gel and a DNA band of 546 bp was excised and purified with GeneClean Spin kit (BIO 101, Vista, CA). The purified DNA was ligated into pCRII vector (Invitrogen, Carlsbad, CA), and the sequence of the resultant clone was verified by DNA sequencing. Transformed cells were cultured, and the plasmid DNA was purified and sequenced. The desired clone was selected, in which a 546-bp DNA sequence was separated into the vector downstream of the T7 promoter. The intron was confirmed to be 110 bp. The pCRII-Y1rE/F plasmid DNA was linearized with HindIII (Promega Corp.), separated on a 1% agarose gel, and purified. Using T7 RNA polymerase (Promega Corp.,) cRNA was produced through in vitro transcription with linearized plasmid DNA. The cRNA sequence is identical to the corresponding part of NPY Y1r mRNA, with an additional 110-base internal segment
transcribed from the intron sequence between Y1r gene exons II and III. The cRNA was digested twice with RQ1 DNase I to eliminate any residual DNA contamination. RT-PCR was performed using primers Y1rE and Y1rF to check the integrity and purity of the cRNA. In RT-PCR performed in the presence of both Y1r mRNA and cRNA, the RT-PCR product of the cRNA could be visualized as a band of 546 bp and easily distinguished from that of NPY Y1r mRNA (436 bp). cRNA was kept at 270 °C until use.

Standard curve for competitive RT-PCR. A RNA pool was prepared from rat hypothalamus and frontal cortex, where Y1r mRNA is enriched. The RNA was digested with RQ1 DNase I to eliminate DNA contamination. RT-PCR was performed using primers Y1rE and Y1rF to check the integrity and purity of the cRNA. In RT-PCR performed in the presence of both Y1r mRNA and cRNA, the RT-PCR product of the cRNA could be visualized as a band of 546 bp and easily distinguished from that of NPY Y1r mRNA (436 bp). cRNA was kept at −70 °C until use.

RT was performed in 20-μl reactions, with 5 U AMV-RT, 0.4 μl 100 mM dithiotreitol, 20 U RNasin, 1 μl 500 μg/ml random hexamer primer, 2 μl 10 mM dNTPs, 2 μl 10X assay buffer B (Fisher Scientific, Fairlawn, NJ), and 3 μl 25 mM MgCl2 plus RNA and cRNA. In a series of tubes containing 50 pg cRNA, 0, 0.2, 0.4, 1, 2, 4, 7, and 10 μg of the same pooled RNA (containing a high concentration of Y1r mRNA) were added, respectively, to each tube, from left to right. Radioactively end-labeled pGEM4 digested with DdeI was used as DNA reference ladder. C, Standard curve. The Y1r mRNA/cRNA RT-PCR product ratio is plotted against Y1r mRNA levels (arbitrary units). D, Standard curve. The Y1r mRNA/cRNA RT-PCR product ratio is plotted against Y1r mRNA, expressed as attomoles (10⁻¹⁸ mol).

Measurement of NPY Y1r mRNA in tissues. RT was performed on samples using 1 μg sample RNA in the presence of 50 pg cRNA, and PCR was performed and analyzed under the same conditions as those described in the standard curve for competitive RT-PCR assay for quantification of NPY Y1r mRNA.
for the standard curve preparation. The NPY Y1r mRNA levels were calculated via the standard curve regression equation and expressed as attomoles of Y1r mRNA per μg total sample RNA. Y1 receptor mRNA data obtained from different assays were normalized by the assay value obtained from a common DNA-free RNA pool to permit direct comparison.

Competitive RT-PCR assay characteristics. Coefficients of variation for the assays at 150, 300, and 1300 amol were 6.99%, 5.43%, and 8.24%, respectively. The lower limit of sensitivity, as defined by 2 times the sd of 10.24695, was 20 amol. Values for NPY Y1r hypothalamic samples fell within the 200–2500 amol range of the assay.

Animal protocols. To examine hypothalamic Y1r mRNA during the estrous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-}

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,

Animal protocols. To examine hypothalamic Y1r mRNA during the es-

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus, diestrus, proestrus, and estrus; an additional group of rats was killed at 1200 h on proestrus. To assess the effects of ovarian steroids on hypo-

diestrus, proestrus, and estrus; an additional group of rats was killed at

trous cycle, 8–10 rats were killed at 1000, 1400, and 1800 h on metestrus,
course of the estrous cycle, the Y1r mRNA levels (Fig. 3) remained low and unchanged in tissues obtained at all three sample times on estrus, metestrus, and diestrus (350–650 amol/μg total RNA). At 1000, 1200, and 1400 h on proestrus, however, the hypothalamic Y1r mRNA levels were significantly greater than those observed in tissues obtained at all other time points (Fig. 3). By 1800 h proestrus, the mean Y1r mRNA level was again found to be diminished, reaching the lowest value of any time point throughout the estrus cycle. Overall, Y1r gene expression was elevated on the morning (1000 h) and early afternoon (1200 and 1400 h) of proestrus, but not before or after this period. In several previous studies we documented that this period coincides with the culmination of preovulatory estrogen secretions and immediately precedes the onset of gonadotropin surges (38).

Effects of ovarian steroids on NPY Y1r gene expression

To directly test the hypothesis that ovarian steroids can stimulate Y1r gene expression, OVX rats were treated with oil vehicle, E2B, P, or E2B followed by P, and hypothalamic tissues were obtained at morning (0900 h) and afternoon (1800 h) points and analyzed for Y1r mRNA content. Y1r mRNA levels were low at both 0900 and 1800 h in OVX rats (Fig. 4), and the absolute values closely approximated those observed in estrous, metestrous, and diestrous rats in the previous experiment. In the OVX rats receiving E2B, however, Y1r mRNA levels were significantly elevated (P < 0.05) compared with corresponding values in the OVX oil-treated rats. Additional treatment of OVX E2B-primed rats with P produced an even greater increase in Y1r mRNA at 1800 h (P < 0.01) compared with that in OVX oil-treated animals (Fig. 4). In animals that received P without prior E2B priming, Y1r mRNA levels were no different from those in OVX oil-treated rats.

PR antagonism blocks NPY Y1r gene expression

The results obtained in OVX, steroid-primed rats suggested that PR activation can provoke a major enhancement of Y1r gene expression. We therefore tested the possibility that PR activation in intact proestrous rats mediates the increase in Y1r mRNA levels that occurs on that day of the cycle. Proestrous rats were untreated, treated with oil vehicle, or treated with one of two PR antagonists, ZK98299 or RU486, at 0730 h and subsequently killed at 1200 h, a time at which Y1r mRNA levels were previously shown to be elevated in untreated proestrous rats. Data from the assay of Y1r mRNAs in these groups of tissues are depicted in Fig. 5. Pretreatment with either RU486 or ZK98299 led to significant
reductions in the Y1r mRNA levels compared with those observed in the untreated or oil vehicle-treated groups (P < 0.01; Fig. 5). Values in the untreated or oil vehicle-treated groups closely resembled the values observed in 1200 h proestrous animals in the previous experiment; similarly, Y1r mRNA levels after PR antagonist treatment were indistinguishable from the low values obtained at cycle times other than proestrous morning or early afternoon.

PR antagonism blocks NPY-induced GnRH release

Additional superfusion experiments were conducted to assess the degree to which PR activation may also mediate increased GnRH responsiveness to NPY. We reasoned that if enhanced Y1r gene expression on proestrus is dependent upon PR activation, and increased GnRH responsiveness to NPY is, in turn, dependent upon enhanced Y1r gene expression, then PR antagonism should block or attenuate the ability of NPY to stimulate GnRH release. Proestrous rats were treated with oil vehicle, RU486, or ZK98299 in the same way as in the previous experiment, and the ME-ARC tissues were removed for superfusion experiments. The standard NPY stimulus (10⁻⁷ M NPY in medium for a duration of 80 min) was delivered to the tissues, and the patterns of GnRH release in response to the NPY challenges were assessed. Pretreatment with either PR antagonist resulted in a complete loss of responsiveness to NPY (Fig. 6). Although NPY again increased the GnRH release rate in tissues from the oil-vehicle-treated animals, the same NPY stimulus produced no effect in tissues of rats pretreated with either PR antagonist. The loss of responsiveness to NPY in tissues of PR antagonist-treated rats was not accompanied by any diminution in the magnitude of the tissue's responsiveness to depolarization with medium containing 60 mM KCl.
Discussion

In female rats, the midcycle surge of gonadotropins is triggered by the release of a GnRH surge into the hypothalamic hypophysial portal vasculature. There are two major determinants of the GnRH surge: exposure of the hypothalamus to preovulatory E2 secretions, and transmission of neural signals for the surge from the 24-h neural clock. It is believed that the major function of E2 in this regard is to couple the clock-derived signals to the neuronal circuitries governing GnRH release. It remains unclear, however, how E2 may act in individual neurons to confer patency through appropriate signaling pathways. We assessed the hypothesis that one major action of E2 is to up-regulate the expression of receptors for a neurotransmitter, i.e. NPY, which is known to mediate signals for initiation of GnRH surges. Our observations reveal that Y1r mRNA expression in hypothalamus is up-regulated on proestrus and stimulated by exogenous E2 treatment. Moreover, these changes in Y1r mRNA expression occur only under conditions in which GnRH responsiveness to NPY is enhanced, viz. on proestrus (4) or in OVX rats after E2 treatment (13). Taken together, these studies are consistent with the idea that E2 induces Y1r expression and thereby confers greater GnRH responsiveness to NPY. We further propose that these actions of E2 represent a major component of the neuroendocrine mechanisms governing release of preovulatory GnRH surges.

Central application of NPY antiserum was previously shown to attenuate LH surges in female rats (7), firmly establishing the requirement for hypothalamic NPY release in the generation of GnRH surges. The nature of this requirement appears to be 2-fold; in addition to the postsynaptic up-regulation of responsiveness to NPY suggested by our previous (4) and current work, presynaptic up-regulation of NPY gene expression (9) and release (5, 12) also occurs during the preovulatory period. Enhancement of NPY expression and NPY actions may occur in parallel, both being stimulated independently by E2. It is also possible that E2 primarily stimulates the expression of NPY, and the resultant increase in NPY release leads to autologous up-regulation of postsynaptic responsiveness. We do not favor the latter possibility, however, because peak NPY release before gonadotropin surges (12) does not precede the period of maximal responsiveness to NPY (4). In any case, it appears that E2 prompts complimentary changes at both pre- and postsynaptic sites, which together produce a robust facilitatory signal that ultimately reaches GnRH neurons.

It remains to be determined which neuronal phenotypes express E2-induced Y1rs, and which of these cells participate in modulation of GnRH surges. Immortalized GnRH neurons respond to NPY analogs in a manner pharmacologically consistent with Y1rs (16). It is therefore possible that NPY axon terminals release the peptide at synaptic junctions with GnRH neurons and facilitate GnRH release through receptors expressed on GnRH neurons. We have proposed that the Y1r mediates the effects of NPY, and that estrogen modulates the expression of the Y1rs. Thus, if NPY activates Y1rs in GnRH neurons, and the expression of Y1rs is regulated via ER activation, then GnRH neurons would be expected to express the ERs that would function in this manner. However, numerous reports have failed to detect appreciable ER expression in GnRH neurons (39–41), suggesting that the locus of action of E2 is not within the GnRH neuronal population itself. This issue remains to be resolved, however, in light of a recent study (42) that used single cell PCR methods to detect ER mRNA in GnRH neurons.

Alternatively, ER activation and subsequent regulation of Y1r expression may occur within afferent circuitries that govern the activity of GnRH neurons. Recent studies (43) demonstrated little or no Y1-positive staining in GnRH cell bodies in the organum vasculosum of the lamina terminalis and preoptic area, although abundant Y1r-positive fiber and cell staining were observed throughout the region. Moreover, Y1r-positive fibers were located in close apposition to GnRH cell bodies. The Y1r (43, 44), estrogen receptor (39, 41, 45), and PR (19, 46–48) are also expressed in coextensive regions within the arcuate nucleus and adjacent regions within the mediobasal hypothalamus. It is therefore possible that NPY actions via E2-induced Y1rs are exerted in either preoptic or mediobasal hypothalamic cells functioning as afferents to GnRH neurons. To fulfill the requirements for being such interneurons, cells would receive projections from NPY neurons, express steroid receptors, and make synaptic contacts with GnRH neurons. Although no specific cell group has been unequivocally shown to possess all of these characteristics, candidate neuronal populations could include catecholaminergic (19, 20, 49, 50) and β-endorphinergic neurons (51–59).

We have demonstrated that E2 treatments that up-regulate GnRH responses to NPY (13) also produce increases in Y1r gene expression. It is not clear how E2 may stimulate Y1r expression, but one possibility is that E2 may directly regulate transcription of the Y1r gene. Sequence analysis of the 5′-flanking region of the rat Y1r gene (32) has revealed the presence of consensus activating protein 1 and P/glucoorticoid response elements (PRE/GRE) sites in the promoter region of the gene, but no consensus estrogen response element site was identified. Detailed functional analysis of these putative regulatory elements, however, has not been carried out. Nevertheless, presence of consensus PRE/GRE sites suggests an alternative possibility, viz. that E2 effects may be mediated by its ability to induce PRs (21), and that estrogen receptor-induced PRs may thereafter be activated and prompt increased transcription of the Y1r gene.

Our data are consistent with the hypothesis that E2’s actions are mediated by PR induction, as PR antagonism blocked both the effects of NPY on GnRH release as well as the induction of Y1r gene expression in proestrous rats. Moreover, additional treatment of OVX E2-primed rats with P resulted in additional stimulation of Y1r gene expression compared with OVX rats treated with E2 only. Indeed, stimulation of Y1r by combined treatment with E2 and P exceeded the level of stimulation seen in tissues of proestrous rats. This may reflect the fact that surge-inducing regimens of E2 and P necessarily produce prematurely elevated P levels (60) compared with intact proestrus rats (61). Thus, Y1r levels may be most augmented in the E2- and P-treated rats due to the peculiar characteristics of the early morning exogenous P signal required to amplify LH surges in OVX E2-primed rats. It is clear, nevertheless, that activation of PRs leads to
a robust amplification of Y1r mRNA expression, and blockade of PRs completely prevents the rise in Y1r mRNA levels that occurs in proestrus rats. The lack of effect of P alone, without E2 priming, is probably due to the absence of E2-induced PRs.

If E2-induced PRs mediate stimulation of Y1r gene expression, then which intracellular signals activate the PRs toward this end? Circulating P, whether derived from the ovaries or adrenals, may function as the cognate ligand that initiates this process. There have been no reports, however, that circulating P levels exhibit signal changes in plasma levels throughout the morning of proestrus. Indeed, the increased expression of Y1r occurs by 1000 h on proestrus morning, whereas a detectable increase in P secretion does not occur until the onset of LH surge in the late afternoon (62, 63). Locally produced P in brain (64) might also activate E2-induced PRs, although the low amounts of the steroid that are produced by the brain have been implicated most often in the manifestation of nongenomic P actions, independent of PRα or PRβ activation. An alternative possibility is that E2-induced PRs are trans-activated in an unliganded state by intracellular signals that arise from neurotransmitter receptor activation. There is now considerable evidence, for example, that dopamine receptor activation and subsequent cAMP formation can trans-activate unliganded PRs and thereby facilitate sexual behavior (23, 65). Similarly, GnRH responsiveness to NPY are dependent upon PRs completely prevents the rise in Y1r mRNA levels in an analogous manner, and whether these effects may similarly contribute to physiological events such as GnRH release on proestrus.

Acknowledgment

The authors thank Brigitte Mann for her expert technical assistance with hormone measurements.

References

5. Sutter SW, Toyoda TT, Otto S, Pletschy PM 1988 Evidence that neuropeptide Y (NPY) released via the hypothalamic-pituitary portal circulation participates in priming gonadotropes to the effects of gonadotropin releasing hormone (GnRH). Endocrinology 123:1208–1210
20. Hong M, Li S, Pelletier G 1995 Role of neuropeptide Y in the regulation of tyrosine hydroxylase messenger ribonucleic acid levels in the male rat arcuate nucleus as evaluated by in situ hybridization. J Neuroendocrinol 7:25–28
23. Mani SK, Allen JM, Lydon JP, Mulac-Jericevic B, Blaustein JD, DeMayo FJ, Conneely O, O'Malley BW 1996 Dopamine requires the unoccupied progeste-
priming in ovariectomized (OVX), estrogen (E), treated, progestosterone receptor knockout (PRKO) mice. Endocrinology 140:3633–3688
25. Urban JH, Das I, Levine JE 1996 Steroid modulation of neuropeptide Y-
induced luteinizing hormone releasing hormone release from median emi-
ience fragments from male rats. Neuroendocrinology 63:112–119
29. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
tion. Proc Natl Acad Sci USA 87:2725–2729
32. Ball HJ, Shine J, Herzog H 1992 Localization of oestrogen receptors in pre-
opitocortin or luteinizing hormone-releasing hormone immunoreactive neurons prior to the preovulatory gonadotropin surge. J Neurosci 14:5548–5558
33. Li S, Hong M, Fournier A, St Pierre S, Pelletier G 1997 Extraordinary structural diversity of NPY-family recep-
34. Ball HJ, Shine J, Herzog H 1992 The murine NPY-1 receptor b sub-
unit. Biochem Pharmacol 45:519–520
37. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
40. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
42. Ball HJ, Shine J, Herzog H 1992 Localization of oestrogen receptors in pre-
opitocortin or luteinizing hormone-releasing hormone immunoreactive neurons prior to the preovulatory gonadotropin surge. J Neurosci 14:5548–5558
43. Li S, Hong M, Fournier A, St Pierre S, Pelletier G 1997 Extraordinary structural diversity of NPY-family recep-
44. Ball HJ, Shine J, Herzog H 1992 The murine NPY-1 receptor b sub-
unit. Biochem Pharmacol 45:519–520
47. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
50. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
52. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
54. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
56. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
58. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721
60. Wang AM, Doyle MW, Wang MF 1980 Quantitation of mRNA by the poly-
merase chain reaction [published erratum appears in Proc Natl Acad Sci USA 1990 Apr;87(7):2865]. Proc Natl Acad Sci USA 86:9717–9721