# Semiconductor device modeling with AMPS-1D

Lecture 3

Special Topics: Device Modeling

#### Outline

- Basic concepts and physics model
- Governing equations
- Input/Output
- Brief literature survey of problems/results
- Updated features in wxAMPS
- Hands on: running standard models, creating a simple model

#### AMPS-1D

- A one-dimensional device simulation program for the Analysis of Microelectronic and Photonic Structures (AMPS)
- Created by the group at the Center for Nanotechnology Education and Utilization, the Pennsylvania State University (professor Stephen J. Fonash, and his group)
- To run under Windows 7/8 platform: use Windows XP mode/Virtual PC (both available from Microsoft website)
- AMPS-1D website: <a href="http://www.ampsmodeling.org">http://www.ampsmodeling.org</a>; YouTube tutorial: <a href="https://youtu.be/9jhs-UFZ\_ZM">https://youtu.be/9jhs-UFZ\_ZM</a>

# **Modeled** structures

- Homojunction and heterojunction p-n and p-i-n, solar cells, detectors, microelectronic (ME) structures (e.g., MIS, FET)
- Multi-junction solar cell and ME structures
- Compositionally-graded detector, solar cell, and ME structures
- Schottky barrier devices with optional back layers
- Novel device ME, photovoltaic, and optoelectronic structures

# **General model features**

- Able to handle any defect and doping energy gap and special distribution
- Shockley-Read-Hall (S-R-H) and band-to-band recombination (no tunneling)
- Boltzmann and Fermi-Dirac statistics
- Varying material properties
- General treatment of contacts
- Ability to handle transport in devices under voltage bias, light bias, or both



# **Physics model**

- Complete device typically consists of combination of structures
  - Shottky barrier
  - p-n homojunction or heterojunction
  - Triple and multi-junctions
- Alignment at the Fermi levels at equilibrium
  - concept of quasi-Fermi levels under bias, or light

#### **Physics model: Shottky barrier** level Conduction band E w. E. $2\varepsilon V$ Valence band Metal Semiconductor MS junction with Shottky barrier Two materials put in contact are joint at the Fermi level on the band diagram ٠ Metal-semiconductor junction results in a Shottky barrier with height equal to differences in work functions Ws and Wm







# Physics model: putting elements together



- Realistic p-n heterojunction with back barrier and defect states (the latter are not fully modeled, tunneling is not included)
- Thermodynamic equilibrium

# Physics model and governing equations

• Governing semiconductor device equations: Poisson equation, free electron, and hole continuity equations

$$\frac{d}{dx}\left(\varepsilon(x)\frac{d\Psi}{dx}\right) = q \cdot \left[p(x) - n(x) + N_{D}^{*}(x) - N_{A}^{-}(x) + p_{I}(x) - n_{I}(x)\right]$$

$$\frac{1}{q}\left(\frac{dJ_{n}}{dx}\right) = -G_{op}(x) + R(x)$$

$$p,n - \text{free carrier concentrations}$$

$$N_{DA} - \text{charged dopants}$$

$$p,n_{I} - \text{defect concentrations}$$

$$Jn, Dp - \text{the electron and hole}$$

$$current densities$$

$$R(x) \text{ is the net recombination rate;}$$

$$G(x) - \text{the optical generation rate}$$

# Physics model and governing equations

• Transport theory allows for the electron and hole current density  $J_n$ , and  $J_p$  to be expressed as

$$J_{n}(x) = q\mu_{n}n\left(\frac{dE_{Fn}}{dx}\right)$$
$$J_{p}(x) = q\mu_{p}p\left(\frac{dE_{Fp}}{dx}\right)$$

- Here μ<sub>n,p</sub> are corresponding electron/hole mobilities
- Obtain equations for E<sub>Fn</sub>, E<sub>Fp</sub> the quasi-Fermi level positions

# **Physics model: dopants**

- Dopants are purposely present
- Localized dopants  $(N^{\pm}_{D,A})$  can be discrete gap states, and/or gap states that form a band (distributions)



# **Physics model: defects**

- Defects are inadvertently present due to imperfections in crystal structure (e.g., grain boundaries), and impurities
- As with localized dopants, discrete, banded, and continuous defect states are allowed
- For the donor-like states, we need the number of these states per volume that have lost an electron or, equivalently, have trapped a hole (visa-versa for acceptor-like states),  $p_t$ , and  $n_t$

# **Physics model: generation**

- When a semiconductor is subjected to an external source of illumination and  $hv>E_{gop}$  at some point x (termed the optical bandgap at x), free electron-hole pairs are produced
- This is the process encompassed by the generation term  $G_{op}(x)$  in the continuity equation



#### **Boundary conditions**

• AMPS solves these three coupled non-linear differential equations, each of which has two associated boundary conditions, at x=0 and x=L

 $\Psi(0) = \Psi_0 - V, \quad \Psi(L) = 0$  $J_p(0) = -qS_{p0}(p_0(0) - p(0)), \quad J_p(L) = -qS_{pL}(p_0(L) - p(0))$ 

- $J_{n}(0) = -qS_{n0}(n_{0}(0) n(0)), \quad J_{n}(L) = -qS_{nL}(n_{0}(L) n(0))$
- $S_{p,n}$  surface recombination velocities (adjustable parameters)
- At x=0 in thermodynamic equilibrium, potential is set to  $\Psi_0$
- $\Psi(0)$  becomes  $\Psi_0$ -V if a voltage bias, light bias, or both exist

### Solution of governing equations

- For numerical solution definition domain, and equations must also be discretized
- At the discretion of the user a non-uniform grid spacing is usually adopted



#### Solution of governing equations

- Obtain a set of three unknown state variables at each point in the device: the electrostatic potential  $\Psi$ , the hole quasi-Fermi level  $E_{\text{Fp}}$ , and the electron quasi-Fermi level  $E_{\text{Fn}}$
- Once the state variables are determined for a given set of biasing conditions (voltage, light, or both) and temperatures, the current density-voltage (J-V) characteristics for these conditions can be generated

# Solution of governing equations

- Newton-Raphson method is used in AMPS to solve this set of 3(N+1) algebraic equations
  - write the 3 governing differential equations in terms of differences in the state variables at the grid points defining these slabs (N-1 for each governing equation)
     add 6 BC equations
- Since it is a method that iteratively finds the roots of a set of functions fi, fei, and fhi, adequate initial guess for the roots is crucial



# **Physics model**

- DOS (density of states) model: details of recombination traffics, trapping and the charge state of the defects are fully accounted for
  - Input energy gap distribution of the defects, their spatial variation, capture cross section information
- Lifetime model: a simplification (linearized lifetime picture), does not account for the details of recombination, provides quick answer
  - Input lifetime values

# **Standard AMPS models**

- Originally developed for crystalline Si, GaAs, others; multiple models are available
- Later standard models for polycrystalline devices at the level of best efficiencies were developed
  - CdTe
  - CuIn(Ga)Se<sub>2</sub>, or CIGS
  - a-Si
- Shared as \*.AMP files

#### Output

- Capable of calculating:
  - band diagrams
  - current components, current-voltage characteristics
  - recombination, generation profiles
  - electric field as a function of light intensity, voltage, temperature
- Output: plots of the above functions







# BRIEF LITERATURE SURVEY OF PROBLEMS AND RESULTS

# Numerical modeling of CIGS and CdTe solar cells: setting the baseline

M. Gloeckler, A.L. Fahrenbruch, and J.R. Sites, Proceedings of 3rd World Conference on PV, Osaka, Japan, 2003

- Numerical modeling of devices in general, and polycrystalline solar cells in particular, must be done with only partial knowledge of input parameters
- The paper provided baseline parameters leading to the best solar cell device performances at the time:
  - CIGS at the efficiency of 17.7% (close to NREL record)
  - CdTe at the efficiency of 16.4% (NREL)





The relationship of CdS/CdTe cell band profiles to J-V characteristics and bias-dependent quantum efficiency, A.L. Fahrenbruch, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI

- AMPS models of two extreme profiles are discussed: an n/i/p junction, where V<sub>bi</sub> is mainly supported by charge at the contacts, and an n/p junction, where V<sub>bi</sub> is supported by charge in the bulk CdTe within the absorber
- Effects of various model parameters on the CdTe device efficiency are presented for both models
- Apparent Quantum Efficiency (AQE) and some transient behavior is analyzed



#### **External bias effect on junction photoluminescence in CdS/CdTe solar cells,** D. Shvydka, A.D. Compaan, V.G. Karpov, IEEE 2002

- Study photoluminescence (PL) from the CdS/CdTe solar-cell junction region
- We observed that applied external bias V does not change the spectral shape of the PL signal, but significantly affects the integral PL intensity I(V)
- The observed phenomena is attributed to the fieldinduced separation of the light-generated e-h
- AMPS modeling was used to find values of electric field at each bias point



#### Bias-dependent PL in CdS/CdTe solar cells



#### Data consistent with the model where PL is suppressed by two competing mechanisms: field induced spatial separation of charge carriers and their nonradiative recombination; we have observed the crossover between the two mechanisms

- Developed a semi-quantitative model of bias-dependent PL
- The main effect of degradation is found to be a decrease in the nonradiative recombination lifetime (possibly by introducing new recombination centers)

#### **wxAMPS**

- New wxAMPS is available through university of Illinois (Angus Rockett group)
- Executable and supporting files for Windows 7/8
- Beyond the original AMPS kernel, wxAMPS incorporates
   two tunneling models
- Based on the option for an unlimited number of layers in the simulation, modeling graded solar cells can be implemented easily in wxAMPS



# wxAMPS: updated features

- User interface: 5 separate input windows are combined into one for quick editing and viewing
- Two tunneling models added: trap-assisted tunneling and the intra-band tunneling (with changes to solver)
- When simulating a series of bias voltages, the solution for the previous voltage is used as the initial guess for the next voltage calculation thus reducing the iteration times and significantly improving convergence

### wxAMPS: updated features



#### **Summary**

- AMPS-1D is one of the oldest modeling packages for semiconductor devices
- With standard models available is useful for a number of problems
- Somewhat complicated installation
- Resent updates should help with making it more user-friendly

#### References

- A manual for AMPS-1D, The Center for Nanotechnology Education and Utilization, The Pennsylvania State University
- Y. Liu, Y. Sun, and A. Rockett, "A new simulation software of solar cells--wxAMPS", Solar Energy Materials and Solar Cells, 2012.
- Other references given in slides