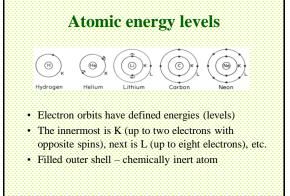

|                          | TABLE 1-1<br>Fundamental Quantities and Units |                           |                   |                                         |       |  |
|--------------------------|-----------------------------------------------|---------------------------|-------------------|-----------------------------------------|-------|--|
|                          | Usual Symbol<br>for Quantity                  | Defining Equation         | SI Unit           | Relationships<br>and Special Units      | 8     |  |
|                          |                                               | FUNDAMENTAL U             |                   |                                         |       |  |
| 1 mass                   | m                                             | Basic physical units      | kilogram (kg)     |                                         |       |  |
| 2 length                 | 1                                             | defined arbitrarily       | meter (m)         |                                         |       |  |
| 3 time                   | t                                             | and maintained in         | second (s)        |                                         |       |  |
| 4 current                | I                                             | standardization           | ampere (A)        |                                         |       |  |
|                          |                                               | DERIVED UNIT              | rs                |                                         |       |  |
| 5 velocity               | v                                             | $v = \Delta l / \Delta t$ | m s <sup>-1</sup> |                                         |       |  |
| 6 acceleration           | on a                                          | $a = \Delta v / \Delta t$ | m s <sup>-1</sup> |                                         |       |  |
| 7 force                  | F                                             | F = m a                   | newton (N)        | $1 \text{ N} = 1 \text{ kg m s}^{-2}$   |       |  |
| 8 work or er             |                                               | $E = F l = 1/2 m v^2$     | joule (J)         | $1 J = 1 \text{ kg m}^2 \text{ s}^{-2}$ |       |  |
| 9 power or               |                                               | P = E/t                   | watt (W)          | 1 W = 1 J/s                             |       |  |
| of doing<br>10 frequency |                                               | number per second         | hertz (Hz)        | $1 \text{ Hz} = 1 \text{ s}^{-1}$       |       |  |
| 10 frequency             | ι,ν                                           | number per second         | nertz (riz)       | 1 112 - 1 3                             | - 225 |  |
|                          |                                               | ELECTRICAL UN             | ITS               |                                         |       |  |
| 11 charge                | Q                                             | Q = I t                   | coulomb (C)       | 1 C = 1 A s                             |       |  |
| 12 potential             | v                                             | V = E/Q                   | volt (V)          | 1 V = 1 J/C                             |       |  |
| 13 capacity              | C                                             | C = Q/V                   | farad (F)         | 1 F = 1 C/V                             |       |  |
| 14 resistance            | R                                             | V = I R                   | ohm $(\Omega)$    | $1 \ \Omega = 1 \ V/A$                  |       |  |

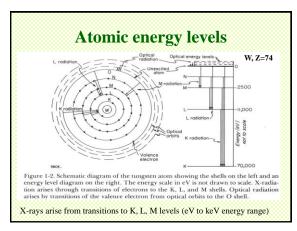






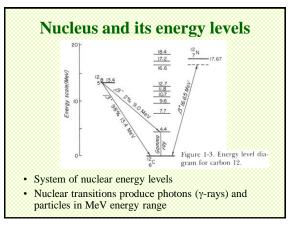




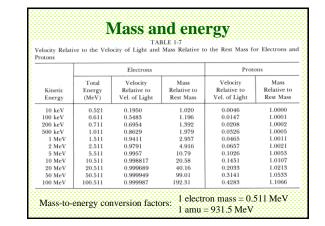


| Atomic                                         | Numbers, A          | omic Weight                          | TABLE 1<br>s, and Mass Ni | umbers of a Few of the                                           | Lighter Elements                           |
|------------------------------------------------|---------------------|--------------------------------------|---------------------------|------------------------------------------------------------------|--------------------------------------------|
| Element                                        | Symbol              | Atomic<br>Number<br>(Z)              | Atomic<br>Weight<br>(amu) | Mass Numbers<br>of Stable Isotopes<br>(A)                        | Mass Numbers<br>of Unstable Isotope<br>(A) |
| Hydrogen                                       | н                   | 1                                    | 1.00797                   | 1.2                                                              | 3                                          |
| Helium                                         | He                  | 2                                    | 4.0026                    | 3, 4                                                             | 5, 6, 8                                    |
| Lithium                                        | Li                  | 3                                    | 6.941                     | 6, 7                                                             | 5, 8, 9, 11                                |
| Beryllium                                      | Be                  | 4                                    | 9.0122                    | 9                                                                | 6, 7, 8, 10, 11, 12                        |
| Boron                                          | В                   | 5                                    | 10.811                    | 10, 11                                                           | 8, 9, 12, 13                               |
| Carbon                                         | C                   | 6                                    | 12.011                    | 12, 13                                                           | 9, 10, 11, 14, 15, 16                      |
| Nitrogen                                       | N                   | 7                                    | 14.0067                   | 14, 15                                                           | 12, 13, 16, 17, 18                         |
| Oxygen                                         | 0                   | 8                                    | 15.9999                   | 16, 17, 18                                                       | 13, 14, 15, 19, 20                         |
| <ul> <li>Mas</li> <li>Ator<br/>12.0</li> </ul> | s numbe<br>nic weig | er A: tota<br>ht (mass<br>1 (6 proto | l number                  | electrons (proto<br>of protons + no<br>12 has atomic<br>eutrons) | eutrons                                    |

## Atoms

- · Isotopes: have the same number of protons, but different number of neutrons
  - Same atomic number Z, and number of electrons
  - Same chemical properties
  - Different mass number A
- *Isotones*: have the same number of neutrons (A-Z)
- · Isobars: have the same atomic mass A (total number of protons + neutrons)
- There is redundancy in full notation <sup>A</sup><sub>Z</sub>X Atomic number Z determines the element X
- *Isomers*: the same A and Z, different nuclear energy state (stable vs. metastable, or excited); notation:  ${}^{A}_{Z}{}^{m}X$




8




9

7

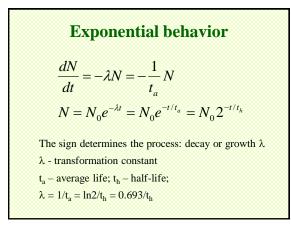


10

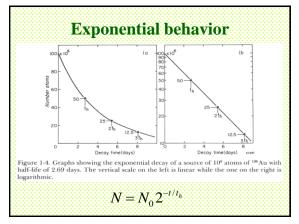


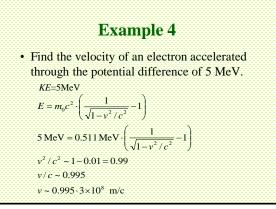
- Mass and energy
- Photon energy:  $E = hv = hc/\lambda$
- Mass-to-energy conversion:  $E = mc^2$ • Relativistic mass: m = -

 $m_0$ 

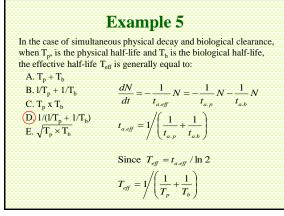

 $\sqrt{1-v^2/c^2}$ 

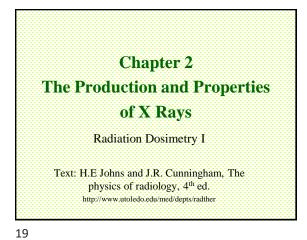
- Rest mass m<sub>0</sub>


• Kinetic energy: K.E. = 
$$mc^2 - m_0c^2$$


|                       | ble of particle rest masses, calculate the                                        |
|-----------------------|-----------------------------------------------------------------------------------|
|                       | d when a proton captures a neutron to create a                                    |
| deuteron. 1 amu corre | sponds to the rest mass energy of 931.5 MeV                                       |
| particle rest 1       | nass. amu                                                                         |
| Proton                | 1.00727                                                                           |
| Neutron               | 1.00866                                                                           |
| Deuteron              | 2.01355                                                                           |
| A. 1.875 MeV          |                                                                                   |
| B. 2.02 MeV           |                                                                                   |
| C.2.22 MeV            | $E_{\gamma} = E_{rmP} + E_{rmN} - E_{rmD} =$                                      |
| D. 2.38 MeV           | (1.00727+1.00866-2.01355)×931.5 MeV =                                             |
| E. 4.03 MeV           | $0.00238 \times 931.5 \text{ MeV} = 2.21697 \text{ MeV} \approx 2.22 \text{ MeV}$ |

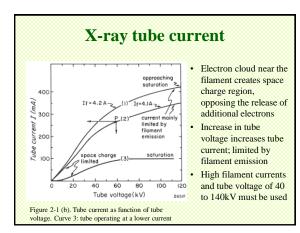






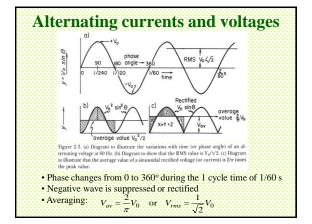


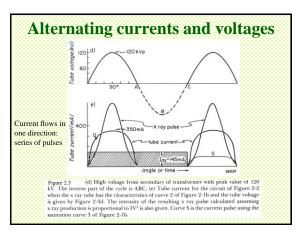


|                                           |              |                                    | BLE 1-8<br>ponential Behavio      | aur                                                                 |                            |
|-------------------------------------------|--------------|------------------------------------|-----------------------------------|---------------------------------------------------------------------|----------------------------|
| Process                                   | Variable     | Constant of<br>Proportionality     | Useful                            | Usual<br>Equation                                                   |                            |
| Radioactive<br>decay of<br>atoms, N       | time, t      | transformation constant, $\lambda$ | mean life, $t_{\rm B}=1/\lambda$  | $\begin{array}{l} half\text{-life},\\ t_h=.693/\lambda \end{array}$ | $N=N_{0}e^{-\lambda t}$    |
| Growth of<br>investment,<br>V             | time, t      | interest rate,<br>r                |                                   | doubling time, $t_d = .693/r$                                       | $V = V_{\theta} e^{+ r t}$ |
| Growth of<br>pop. of<br>cells, N          | time, t      | growth constant, $\lambda$         |                                   | doubling time, $t_d=.693/\lambda$                                   | $N=N_0 e^{+\lambda t}$     |
| Killing of<br>cells, N, by<br>radiation   | dose, D      | killing constant, $\lambda$        | mean lethal dose, $D_0=1/\lambda$ | dose to kill<br>$50\%$ , $D_h =$<br>$.693D_0$                       | $N = N_0 e^{-D/D_0}$       |
| Attenuation<br>of a beam of<br>photons, N | thickness, x | attenuation coefficient, $\mu$     | mean free path, $1/\mu$           | half-value layer $x_h = .693/\mu$                                   | $N = N_0 e^{-\mu x}$       |

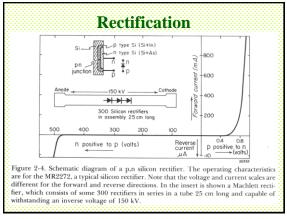




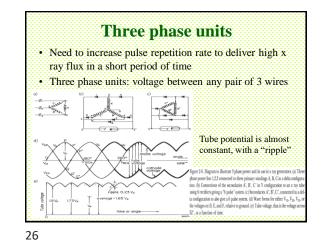
X-ray tube design · Filament is heated, releasing electrons via thermionic emission (V, ~ 10V, If~ 4A, resulting in T>2000°C) current primary beam · X-rays are produced by high-speed electrons Tube useful co bombarding the target Typically < 1% of</li> energy is converted to x-High rays; the rest is heat 1 milliammeter Figure 2-1 (a). Schematic diagram of x-ray tube and circuit


20



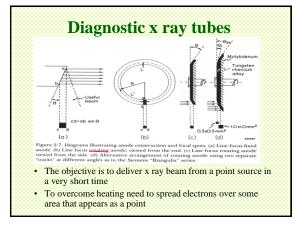



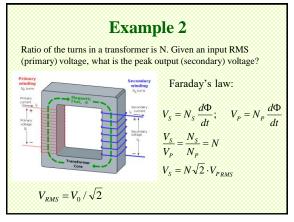


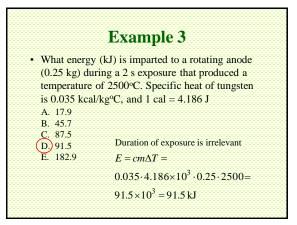


- The source of electrical power is usually ac (easier to transmit through power lines)
- X-ray tubes are designed to operate at a single polarity: positive anode, negative cathode
- Need to manipulate available power source (suppress or rectify wrong polarity)
- The highest x-ray production efficiency can be achieved at a constant potential







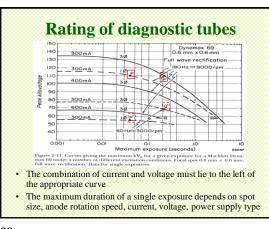




Example 1 • Which type of x-ray generator produces the highest effective tube voltage, assuming the peak voltage is applied across the tube? A. One-phase B. Three-phase C. Constant potential D. The effective voltage is the same for all types above In C - effective voltage = peak voltage







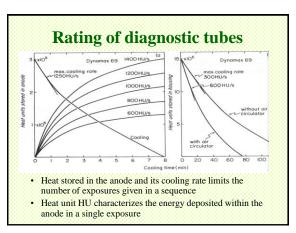



## **Diagnostic x ray tubes** X-rays that are emitted from the target travel through different thickness of cathode material Heel effect: radiation intensity ray tube is higher than on the anode side photons on the imager

31

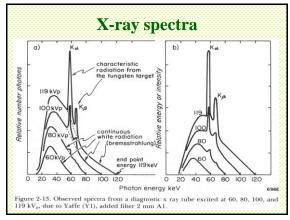
Intensity profile

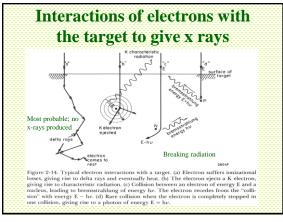
- toward the cathode side of the x-
- Cathode is typically mounted over the thicker part of the patient to balance the amount of transmitted



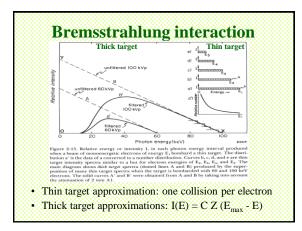

33

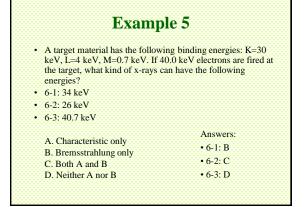
## **Rating of diagnostic tubes**


- · Focal spot loading determines the maximum permissible exposure: there is a maximum power that can be tolerated before target starts melting (T<sub>melting</sub>=3400°C for tungsten)
- Anode cooling and housing cooling rates determine the number of exposures that may be given in a sequence

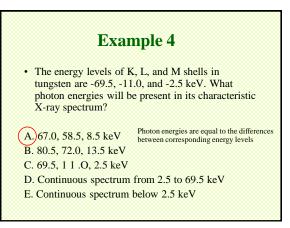

32

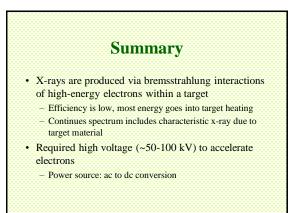






## X ray tubes for radiotherapy · Mostly for superficial treatments · No need for a small spot source • The instantaneous energy input is small (about 1/10) but the average energy input is ~ 10 times greater compared with a diagnostic tube · Due to much higher energy (>200keV) of electrons bombarding the target, there is a problem of secondary electrons emerging from the target Solution: the target is placed in a "hood" - hollow tube with copper shielding intercepting the secondary electrons










|                                    | Princip       | al Emission     | TABI<br>Lines in keV | for Tungsten a                    | nd Molybde      | num             |                    |
|------------------------------------|---------------|-----------------|----------------------|-----------------------------------|-----------------|-----------------|--------------------|
| K Lines Tungsten                   |               |                 |                      | L Lines Tungsten                  |                 |                 |                    |
| Transition                         | Symbol        | Energy<br>(keV) | Relative<br>Number   | Transition                        | Symbol          | Energy<br>(keV) | Relative<br>Number |
| K-N <sub>II</sub> N <sub>III</sub> | $K\beta_2$    | 69.081          | 7                    | L <sub>r</sub> -N <sub>III</sub>  | $L\gamma_5$     | 11.674          | 10                 |
| K-M <sub>III</sub>                 | $K\beta_1$    | 67.244          | 21                   | L <sub>II</sub> -N <sub>IV</sub>  | Ly <sub>1</sub> | 11.285          | 24                 |
| K-M <sub>II</sub>                  | $K\beta_3$    | 66.950          | 11                   | L <sub>III</sub> -N <sub>V</sub>  | $L\beta_2$      | 9.962           | 18                 |
| K-L <sub>III</sub>                 | $K\alpha_1$   | 59.321          | 100                  | L <sub>I</sub> -M <sub>III</sub>  | $L\beta_3$      | 9.817           | 37                 |
| K-L <sub>II</sub>                  | $K\alpha_2$   | 57.984          | 58                   | $L_{II}-M_{IV}$                   | $L\beta_1$      | 9.670           | 127                |
|                                    | K lines M     | lolybdenum      |                      | L <sub>I</sub> -M <sub>II</sub>   | $L\beta_4$      | 9.523           | 29                 |
| $K-M_{II}M_{III}$                  | $K\beta_{31}$ | 19.602          | 24                   | $L_{III}-M_V$                     | $L\alpha_1$     | 8.395           | 100                |
| K-L <sub>III</sub>                 | Ka1           | 17.479          | 100                  | L <sub>III</sub> -M <sub>IV</sub> | $L\alpha_2$     | 8.333           | 11                 |
| K-L <sub>II</sub>                  | $K\alpha_2$   | 17.375          | 52                   |                                   |                 |                 |                    |



