

Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radther

Outline

- · Terms: activity, half life, average life
- Nuclear disintegration schemes
- · Parent-daughter relationships
- Activation of isotopes

Natural radioactivity

- Particles inside a nucleus are in constant motion; can escape if acquire enough energy
- Most lighter atoms with Z<82 (lead) have at least one stable isotope
- All atoms with Z > 82 are radioactive and disintegrate until a stable isotope is formed
- Artificial radioactivity: nucleus can be made unstable upon bombardment with neutrons, high energy protons, etc.

Beta disintegrations

- In the production of isotopes in a <u>nuclear reactor</u> a neutron is usually added to a stable nucleus, resulting in <u>β[.] emitters</u>
- Example: to produce ⁶⁰Co a neutron is added to ⁵⁹Co
- <u>Particle accelerators</u> (more expensive) produce β^+ emitters
- Since 2m₀c²=1.022 MeV energy is required to produce electron-positron pair – this is the minimum difference between the initial and final energy (parent-daughter) for β⁺ emitters

$_{Z}^{A}X \rightarrow_{Z-1}^{A}Q$

· Orbital electron can be captured by nucleus

p + e (usually K electron) $\rightarrow n + v$

- This process is competing with positron emission
 in proton-rich nuclei
- The only process when the energy difference between the initial and final state <1.022 MeV

Isomeric transitions: Photon emission

- Technetium is predominantly an artificially produced radioactive metal. Example: ${}^{99}_{42}$ Mo ($t_h=66.7$ hours) produced in nuclear reactors by β decay to ${}^{99m}_{43}$ Tc
- All isotopes are radioactive, most common: ${}^{99}_{43}$ Tc (t_h= 210,000 years) and ${}^{99m}_{43}$ Tc (t_h= 6 hours)
- ^{99m}Tc is widely used
 - as a tracer for medical diagnosis (γ of 140 keV is detected with gamma-camera)
 - functional scans of brain, bone, liver, spleen, kidney, thyroid
 - for blood flow studies

Nuclear transformations			
	ΔΑ	ΔZ	Energy deposition
α disintegration	-4	-2	Total energy of a particle
β ⁻ decay	0	+1	E _{mean} ~1/3 E _{max}
β+ decay	0	-1	$E_{mean} \sim 1/3 E_{max}$ and $E_{s} = 1.02 \text{ MeV}$
Electron capture	0	-1	Most energy carried away by v ; E _{Fluoresence} and/or E _{Auger}
Isomeric transitions	0	0	
ү гау	0	0	E _y available
Internal conversion	0	0	$E_{\text{electron}} = E_{\gamma} - E_{b}$

Example 3

 The mass number (A) changes only for _____ decay:

A. alpha

- B. beta minus
- C. beta plus
- D. electron capture
- E. isomeric

Growth of radioactive daughter

 Radioactive daughter is formed at the rate at which the parent decays (λ₁), and itself decays with a different rate (λ₂)

$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$$
$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} (N_1)_0 \left[e^{-\lambda_1 t} - e^{-\lambda_2 t} \right]$$

Solution:

Growth of radioactive daughter

· Express the same solution for activity

$$A_2 = A_1 \frac{\lambda_2}{\lambda_2 - \lambda_1} \left[1 - e^{-(\lambda_2 - \lambda_1)t} \right]$$

• For a special case of $\lambda_2 \gg \lambda_1$ can simplify to

$$A_2 \approx A_1 \Big[1 - e^{-\lambda_2 t} \Big]$$

• After some time – reach a state of parent-daughter equilibrium, where $A_1 = A_2$

Summary

- · Terms: activity, half life, average life
- Nuclear disintegration schemes
- Parent-daughter relationships
- Activation of isotopes