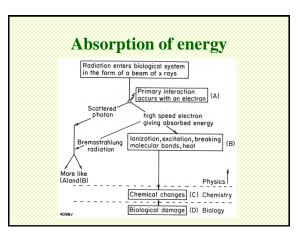
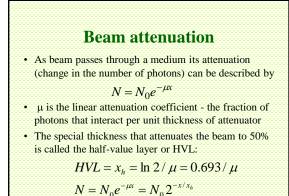
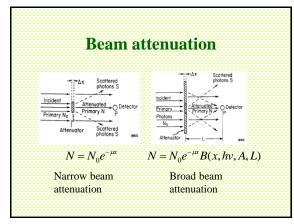

Chapter 5 The Interaction of Ionizing Radiation with Matter

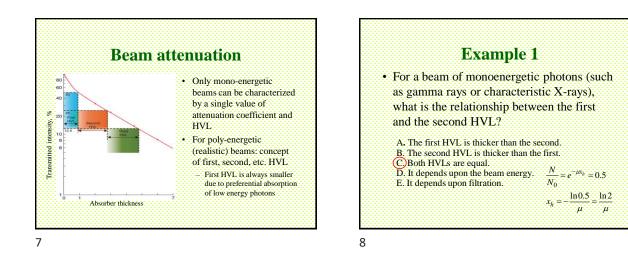
Radiation Dosimetry I

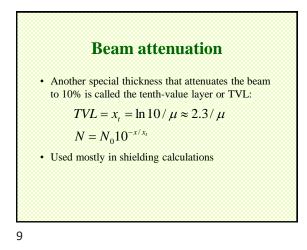
Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radither


1

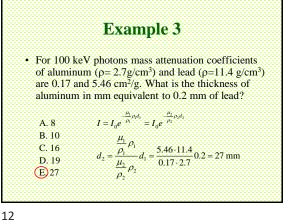

Absorption of energy


- When an x-ray beam passes into an absorbing medium such as body tissues, some of the energy carried by the beam is transferred to the medium where it may produce biological damage
- The energy deposited per unit mass of the medium is known as the **absorbed dose** and is a very useful quantity for the prediction of biological effects
- The events that result in this absorbed dose and subsequent biological damage are quite complicated


3



4



Example 2					
Approxi	Approximately how many HVLs are in 6				
TVL? (T	VL – tenth value layer)				
A. 1	$HVL: \frac{N}{N_0} = 0.5 = e^{-\mu x_h} \Longrightarrow x_h = -\frac{\ln 0.5}{\mu} = \frac{\ln 2}{\mu}$				
B. 10	$N_0 \qquad \qquad$				
(C)18	$TVL: \frac{N}{N_0} = 0.1 = e^{-\mu x_r} \Longrightarrow x_r = -\frac{\ln 0.1}{\mu} = \frac{\ln 10}{\mu}$				
D. 28					
E. 31	$x_{i} = \frac{\ln 10}{\mu} = \frac{\ln 10}{\ln 2} \times x_{h} \approx 3x_{h} \Longrightarrow 6x_{i} \approx 18x_{h}$				
1.51	$x_i = \frac{1}{\mu} = \frac{1}{\ln 2} \times x_h \approx 5x_h \Rightarrow 6x_i \approx 18x_h$				

	P	telation Between Atten		<u> </u>
Coefficient	Symbol	Relation Between Coefficients	Units of Coefficients	Units in Which Thickness is Measure
linear	μ		m^{-1}	m
mass	$\left(\frac{\mu}{\rho}\right)$	$\frac{\mu}{\rho}$	m²/kg	kg/m ²
electronic	eμ	$\frac{\mu}{\rho} \cdot \frac{1}{1000 \text{ N}_{e}}$	m²/el	el/m²
atomic	"μ	$\frac{\mu}{\rho} \cdot \frac{Z}{1000 N_e}$	m²/at	at/m²
= density e = number o = atomic nun				

Example 4

 The mass attenuation coefficient of bone with a density of 1.8 g/cm³, is 0.2 cm²/g for an 80-keV gamma ray. The percentage of 80-keV photons attenuated by a slab of bone 4 cm thick is _____%.

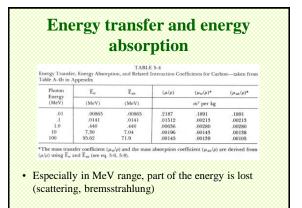
A.36	
B.45	Fraction of transmitted:
C.55	$N/N_0 = e^{-\mu x} = e^{-0.2 \times 1.8 \times 4} = 0.24$
D.64	
E)76	$N_{atten} / N_0 = 1 - 0.24 = 0.76$

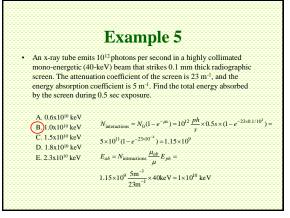
13

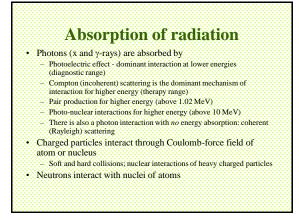
Types of ionizing radiations

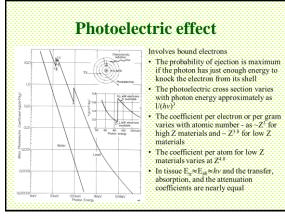
- Electromagnetic radiations

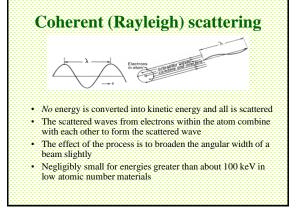
 X-rays and gamma-rays
- · Particulate radiations
 - Electrons, protons, α -particles, heavy charged particles
 - Neutrons
- All charged particles: directly ionizing radiation
- X and γ-rays, as well as neutrons indirectly ionizing radiation

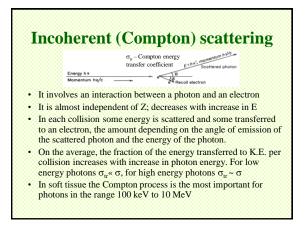

14

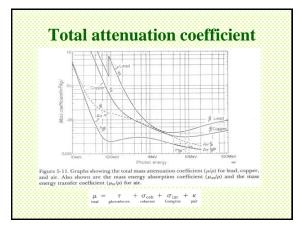

Energy transfer and energy absorption

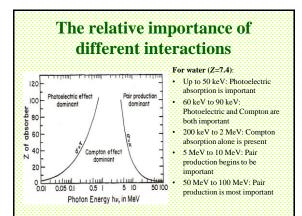

- Photons transfer their energy to a medium as they interact
- Generally, only a portion of that energy can be converted into kinetic energy of electrons, and eventually get absorbed
- For average energy transferred (absorbed) can introduce corresponding attenuation coefficients:

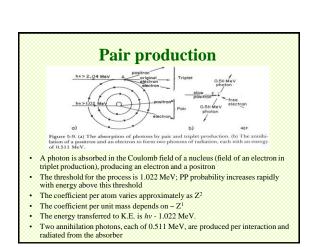

$$\mu_{tr} = \mu(\overline{E}_{tr} / hv)$$
$$\mu_{ab} = \mu(\overline{E}_{ab} / hv)$$

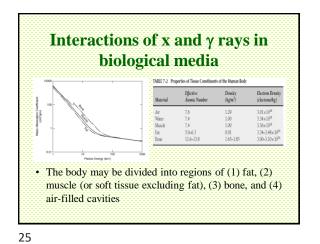

15

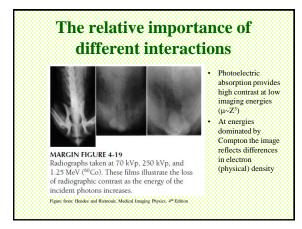




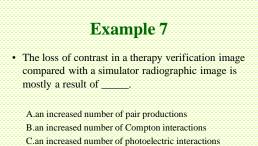








biological media							
Hydrogen	11.2	10.2	11.2	8.4			
Carbon	57.3	12.3		27.6			
Nitrogen	1.1	3.5		2.7			
Oxygen Sodium	30.3	72.9 0.08	88.8	41.0			
Magnesium		0.02		7.0			
Phosphorus		0.2		7.0			
Sulfur	0.06	0.5		0.2			
Potassium		0.3					
Calcium		0.007		14.7			


26

27

28

- Da decreased number of photoelectric interactions
- E.a decreased number of Compton interactions

Summary

- Absorption of energy
- Quantitative characterization

 Attenuation, HVL, TVL
 Absorption coefficients
- · Basic interactions of radiation with matter
- Photon interactions: overview