Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter

Radiation Dosimetry I

Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radther

Outline • Photon interactions - Photoelectric effect - Compton scattering - Pair productions

- Coherent scattering
- Charged particle interactions
 - Stopping power and range
 - Bremsstrahlung interaction
 - Bragg peak

Photon interactions

- · With energy deposition
 - Photoelectric effect
 - Compton scattering
 - No energy deposition in classical Thomson treatment
 - Pair production (above the threshold of 1.02 MeV)
 - Photo-nuclear interactions for higher energies (above 10 MeV)
- · Without energy deposition
 - Coherent scattering

•

Photoelectric effect

- Collision between a photon and an atom results in ejection of a bound electron
- The photon disappears and is replaced by an electron ejected from the atom with kinetic energy $KE = hv - E_b$
- Highest probability if the photon energy is just above the binding energy of the electron (absorption edge)
- Additional energy may be deposited locally by Auger electrons and/or fluorescence photons

Thomson scattering (classical treatment) Elastic scattering of photon (EM wave) on free electron Electron is accelerated by EM wave and radiates a wave No energy is given to the electron; wavelength of the scattered photon does not change

Classical scattering coefficient per electron per unit solid angle:

		catterii	10	
	oner enre s		-9	
Photon is a	scattered by combine	ed action of th	e whole ator	m
Photons do	o not lose energy, ju	st get redirect	ed through a	
small angle	e	-	~	
	d particles receive e	nergy no exci	tation produ	iced
	coefficient (F - aton			
Southing	councient (1 - aton	ine form facto	i, aoulateu)	
	2			
$d\sigma_c$	$oh = r_0^2 (1 + cos^2 \theta)$	$E(x, 7)^{2}$	πcin A	
$\frac{d\sigma_c}{d\theta}$	$\frac{\partial h}{\partial t} = \frac{r_0^2}{2} \left(1 + \cos^2 \theta \right)$	$\left(F(x,Z) \right)^2 2$	$\pi \sin heta$	
		$\left F(x,Z) \right ^2 2$	$\pi \sin heta$	
x = (s	$\sin \theta/2)/\lambda$			
x = (s Typica	$\sin \theta/2)/\lambda$ I ratios of coherent to to	tal attenuation c	pefficient	
x = (s	$\sin \theta/2)/\lambda$			
x = (s Typica	$\sin \theta/2)/\lambda$ I ratios of coherent to to	tal attenuation c	pefficient	
x = (s Typica Element	$\frac{1}{\ln \theta/2} / \lambda$ I ratios of coherent to to $h\nu = 0.01 \text{ MeV}$	tal attenuation co 0.1 MeV	pefficient 1.0 MeV	

- Incoherent scattering energy is transferred to electron (inelastic scattering)
- · Energy and momentum are conserved

Example 2

· Compton scattered electrons can be emitted at:

A. Any angle.

B.0º-90º with respect to the direction of the incident photon

C. 30°-120° with respect to the direction of the incident photon.

D. 90°-180° with respect to the direction of the incident photon.

Charged particle interactions

- All charged particles lose kinetic energy through Coulomb field interactions with charged particles (electrons or nuclei) of the medium
- In each interaction typically only a small amount of particle's kinetic energy is lost ("continuous slowing-down approximation" – CSDA)
- Typically undergo very large number of interactions, therefore can be roughly characterized by a common path length in a specific medium (*range*)

Heavy charged particle interactions

· Energy transferred to the electron of the medium

$$\Delta E = \frac{z^2 r_0^2 m_0 c^4}{h^2} \frac{M}{E}$$

• Parameters:

E – kinetic energy of the particle; ze- its charge; M – mass

- b is the impact parameter

 Slower moving particle (lower KE) transfers more energy

Interactions of electrons

- In any given collision with another electron, one emerging with higher energy is assumed to be primary (max energy exchange is limited to half of its original energy)
- Due to small mass
 - Relativistic effects are important
 - Interactions with nucleus: rapid deceleration results in bremsstrahlung (breaking) radiation

Bremsstrahlung interactions

 Fast moving charged particle of mass *M*, and charge *ze*, passing close to a nucleus of mass *M_N* >>*M* and charge Ze will experience electric force, corresponding to accelerations:

$$a = \frac{F}{M} = \frac{kzZe^2}{r^2M}$$

- Accelerated charge radiates energy at a rate $\sim a^2$
- The rate of energy loss is negligible for particles other than electrons (even protons) due to $1/M^2$

Stopping power Assuming CSDA, can evaluate the amount of energy lost by charged particle per unit track length, dE/dx Total mass stopping power – energy loss per unit

track length, normalized to the medium density

$$S_{tot} = \frac{1}{\rho} \left(\frac{dE}{dx} \right)_{particle, E, Z}$$

• Energy will be spent on excitations and ionizations (through collisions), can also be emitted in a radiative process

 $S_{tot} = S_{ion} + S_{rad}$

Stopping power • Mass stopping power – energy loss per unit track length in producing ionization in the absorbing medium $S_{nm} = \frac{1}{\rho} \left(\frac{dE}{dx} \right) = 4\pi n_n^2 N_e \frac{z^2 m_0 e^2}{\beta^2} [..]$ • Parameters: N_e – number of electrons per gram; [...] is a slowly increasing function of the particle energy • For electrons [...] term is more complex

• Radiation stopping power – energy loss due to bremsstrahlung for electrons $S_{rad} = \frac{1}{\rho} \left(\frac{dE}{dx} \right) = 4r_0^2 \frac{N_s ZE}{137} [...]$

Restricted stopping power

 In slowing down an electron may suffer a large energy loss in producing delta-ray: introduce a cutoff energy Δ allowing to not account for escaping delta-rays

 Restricted stopping power (or LET – linear energy transfer) L_A - only energy exchanges less than Δ are accounted for <u>TABLE 6-1</u> pairational Stopping Power, San and Restricted Stopping Power L_A for Electrons in Water

(MeV)	Sten	L.,0001	L.001	L.01	L.,1
.01	22.56	14.64	19.59		
.02	13.17	8.300	10.90	13.16	
.04	7.777	4.781	6.170	7.441	
.08	4.757	2.859	3.633	4.373	
.1	4.115	2.471	3.106	3.735	
.2	2.793	1.632	2.037	2.436	2.793
.4	2.148	1.231	1.517	1.801	2.068
.8	1.886	1.061	1.292	1.523	1.748
1	1.852	1.034	1.256	1.477	1.695
2	1.839	1.002	1.208	1.414	1.619
4	1.896	1.008	1.209	1.410	1.611
8	1.970	1.023	1.223	1.422	1.621
10	1.994	1.028	1.227	1.426	1.625
20	2.063	1.042	1.239	1.437	1.634
40	2.125	1.050	1,246	1.442	1.638
80	2.184	1.053	1.248	1.444	1.639
100	2.204	1.054	1.249	1.445	1.640

Example 6 • A 6 MeV electron travels through 3 m of air. By how much is its average energy reduced? • 0.6 MeV • 1 MeV • 1 MeV • 2 MeV • 1 MeV • 3 MeV • 2 MeV • 3 MeV

