Chapter 6
The Basic Interactions between Photons and Charged Particles with Matter
Radiation Dosimetry I

http://www.utoledo.edu/med/depts/radther

Outline
• Photon interactions
 – Photoelectric effect
 – Compton scattering
 – Pair production
 – Coherent scattering
• Charged particle interactions
 – Stopping power and range
 – Bremsstrahlung interaction
 – Bragg peak

Photon interactions
• With energy deposition
 – Photoelectric effect
 – Compton scattering
 • No energy deposition in classical Thomson treatment
 – Pair production (above the threshold of 1.02 MeV)
 – Photo-nuclear interactions for higher energies (above 10 MeV)
• Without energy deposition
 – Coherent scattering

Photoelectric effect
• Collision between a photon and an atom results in ejection of a bound electron
• The photon disappears and is replaced by an electron ejected from the atom with kinetic energy \(KE = h\nu - E_b \)
• Highest probability if the photon energy is just above the binding energy of the electron (absorption edge)
• Additional energy may be deposited locally by Auger electrons and/or fluorescence photons

Photoelectric mass attenuation coefficients of lead and soft tissue as a function of photon energy. K and L absorption edges are shown for lead.

Photoelectric effect
• Electron tends to be ejected at 90° for low energy photons, and approaching 0° with increase in energy
• Kinetic energy given to electron \(KE = h\nu - E_b \), independent of scattering angle
• Interaction probability \(\sim Z^2(h\nu)^3 \)
• No universal analytical expression for cross-section

Thomson scattering (classical treatment)
• Elastic scattering of photon (EM wave) on free electron
• Electron is accelerated by EM wave and radiates a wave
• No energy is given to the electron; wavelength of the scattered photon does not change
• Classical scattering coefficient per electron per unit solid angle:
\[
\frac{d\sigma_0}{d\Omega} = \frac{n^2}{2} \left(1 + \cos^2 \theta\right)
\]
max at \(\theta = 0, 180° \)
\(\frac{1}{2} \) max at \(\theta = 90° \)

\(n = \frac{2r}{\lambda} \) - classical radius of electron
Thomson scattering (classical treatment)

- No energy dependence, total \(\sigma_T = 66.5 \times 10^{-26} \text{ m}^2/\text{electron} \)
- Works for low photon energies, \(<< m_0 c^2 \)
- Overestimates for photon energies > 0.01 MeV (factor of 2 for 0.4 MeV)

\[
\frac{d\sigma_T}{d\Omega} = 2\pi \sin \theta d\theta
\]

\[
\frac{d\sigma_T}{d\theta} = \frac{\gamma^2}{2} \left(1 + \cos^2 \theta \right) 2\pi \sin \theta
\]

Coherent scattering

- Photon is scattered by combined action of the whole atom
- Photons do not lose energy, just get redirected through a small angle
- No charged particles receive energy, no excitation produced
- Scattering coefficient \(F \) - atomic form factor, tabulated:

\[
\frac{d\sigma_{coh}}{d\theta} = \frac{\gamma^2}{2} \left(1 + \cos^2 \theta \right) \left| F(x, Z) \right|^2 2\pi \sin \theta
\]

Example 1

- A 5-keV photon undergoing coherent or classical scatter would be most likely to lose ___% of its energy in the process.

A. 0
B. 10
C. 50
D. 90
E. 100

Compton scattering kinematics

- Incoherent scattering – energy is transferred to electron (inelastic scattering)
- Energy and momentum are conserved

\[
h\nu = h\nu' + E = h\nu' + m_0 c^2 \left(\frac{1}{\sqrt{1 - v^2/c^2}} - 1 \right)
\]

\[
p_x = \frac{h\nu}{c} \cos \theta + \frac{m_0 v}{\sqrt{1 - v^2/c^2}} \cos \phi
\]

\[
p_y = \frac{h\nu}{c} \sin \theta
\]

Compton scattering probability

- Klein-Nishina coefficient: Compton scattering on free electron, but includes Dirac’s quantum relativistic theory

\[
\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} F_{KN} = \frac{\gamma^2}{2} \left(1 + \cos^2 \theta \right) F_{KN},
\]

where

\[
F_{KN} = \left\{ \begin{array}{ll}
1 & \text{for low energies for high energies} \\
\left[1 + \alpha(1 - \cos \theta) \right] & \text{for high energies}
\end{array} \right.
\]

- Factor \(F_{KN} \) describes the deviation from classical scattering
 - \(F_{KN} \sim 1 \) for higher energies
 - \(F_{KN} \sim 1 \) for small \(\alpha \) (low energy) or \(\theta = 0 \)
Energy distribution of Compton electrons

- Lower energy and high energy electrons are more likely to be produced
- Higher energy photons are more likely to transfer more energy to Compton electrons

Effect of binding energy

- In real situation electrons are bound and in motion
- Additional factor $S(x, Z)$ is introduced
 \[\frac{d\sigma}{d\theta} = S(x, Z) \]
 \[x = \sin(\theta)/\lambda \]
- Makes the scattering coefficient Z-dependent

Example 2

- Compton scattered electrons can be emitted at:
 A. Any angle.
 B. 0°-90° with respect to the direction of the incident photon
 C. 30°-120° with respect to the direction of the incident photon.
 D. 90°-180° with respect to the direction of the incident photon.

Example 3

- In Compton scattering original photon has energy 1.25 MeV, scattered at 30°.
- Calculate the energy of scattered photon.
 \[\alpha = \frac{h\nu}{m_e c^2} = 2.45 \]
 \[\nu' = \frac{1}{1 + \frac{\alpha(1 - \cos \theta)}{\alpha}} = \frac{1.25}{1 + 2.45(1 - \cos 30)} = 0.941 \text{MeV} \]

Pair production

- Photon is absorbed giving rise to electron and positron
- Occurs in Coulomb force field - usually near atomic nucleus; threshold energy 1.022 MeV
- Sometimes occurs in a field of atomic electron (triplet production); threshold energy 2.044 MeV
- For 10-MeV photons in soft tissue, for example, about 10%.
- The ratio of triplet to pair production increases with E of incident photons and decreases with Z.
Charged particle interactions
- All charged particles lose kinetic energy through Coulomb field interactions with charged particles (electrons or nuclei) of the medium.
- In each interaction typically only a small amount of particle’s kinetic energy is lost (”continuous slowing-down approximation” – CSDA).
- Typically undergo very large number of interactions, therefore can be roughly characterized by a common path length in a specific medium (range).

Heavy charged particle interactions
- Energy transferred to the electron of the medium
 \[\Delta E = \frac{z^2 n_e \epsilon_0 c^2 M}{b^2 E} \]
- Parameters:
 - \(E \) – kinetic energy of the particle; \(z \) – its charge; \(M \) – mass
 - \(b \) is the impact parameter
- Slower moving particle (lower KE) transfers more energy.

Interactions of electrons
- In any given collision with another electron, one emerging with higher energy is assumed to be primary (max energy exchange is limited to half of its original energy).
- Due to small mass
 - Relativistic effects are important
 - Interactions with nucleus: rapid deceleration results in bremsstrahlung (breaking) radiation.

Bremsstrahlung interactions
- Fast moving charged particle of mass \(M \), and charge \(z\epsilon \), passing close to a nucleus of mass \(M_N \) \(\gg M \) and charge \(Z \epsilon \) will experience electric force, corresponding to accelerations:
 \[a = \frac{F}{M} = \frac{kZ\epsilon^2}{r^2M} \]
- Accelerated charge radiates energy at a rate \(\sim a^2 \)
- The rate of energy loss is negligible for particles other than electrons (even protons) due to \(1/M^2 \).

Stopping power
- Assuming CSDA, can evaluate the amount of energy lost by charged particle per unit track length, \(dE/dx \).
- Total mass stopping power – energy loss per unit track length, normalized to the medium density
 \[S_{tot} = \frac{1}{\rho} \frac{dE}{dx} \]
- Energy will be spent on excitations and ionizations (through collisions), can also be emitted in a radiative process
 \[S_{tot} = S_{ion} + S_{rad} \]

- Mass stopping power – energy loss per unit track length in producing ionization in the absorbing medium
 \[S_{ion} = \frac{1}{\rho} \frac{dE}{dx} \approx 4 \sigma_x N_e \frac{z^2 n_e \epsilon_0 c^2}{\beta^2} \]
- Parameters: \(N_e \) – number of electrons per gram; \(\ldots \) is a slowly increasing function of the particle energy
- For electrons \(\ldots \) term is more complex
- Radiation stopping power – energy loss due to bremsstrahlung
 for electrons \[S_{rad} = \frac{1}{\rho} \frac{dE}{dx} \approx 4 \sigma_x N_e Z \epsilon \frac{E}{137} \]
Stopping power

- Energy loss by radiation increases with atomic number of medium and electron energy.
- Sharp increase in stopping power at low energy leads to the Bragg peak.

Bragg peak

- Slower moving charged particle (lower KE) transfers more energy, resulting in Bragg peak at the end of its track.
- Never observed for electrons: due to their low mass, electrons constantly change direction as they slow down.

Range of electrons

- Charge particles are characterized by a range—a finite distance.
- Can be calculated from stopping power in continuous slowing down approximation (CSDA).

\[
R = \int_0^{E_{\text{ion}}} \frac{dE}{S(E)}
\]

Rule of thumb: for electron energies > 0.5 MeV, the range in unit density material (in g/cm³) is, in cm, about half the energy in MeV.

Example 4

- A 6 MeV electron beam passes through 2 cm of tissue, overlying lung (density 0.25 g/cm³). The approximate range in the patient is ___ cm.

A. 1
B. 3
C. 6
D. 9
E. 12

Example 5

- A Cerrobend cutout for a 12 MeV electron beam should be approximately ___ cm thick, to stop all the electrons and transmit only the bremsstrahlung. (Hint: Cerrobend requires 20% more thickness than lead.)

A. 7
B. 4
C. 1.5
D. 0.7
E. 0.4

Mean stopping power

- If electron beam is not monoenergetic need to average over all electron energies.

\[
\bar{S}(E) = \frac{\int d\Phi(E) S_{\text{ion}}(E) dE}{\int d\Phi(E) dE}
\]

- Similarly, if electrons are produced by polyenergetic photon beam with fluence \(\Phi(E) \).
Restricted stopping power

- In slowing down an electron may suffer a large energy loss in producing delta-ray, introduce a cutoff energy Δ allowing to not account for escaping delta-rays.
- Restricted stopping power (or LET – linear energy transfer) L_{Δ} - only energy exchanges less than Δ are accounted for.

<table>
<thead>
<tr>
<th>(MeV)</th>
<th>R_{air}</th>
<th>L_{air}</th>
<th>L_{ET}</th>
<th>E_{Δ}</th>
<th>L_{Δ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>22.54</td>
<td>43.53</td>
<td>10.60</td>
<td>19.10</td>
<td>9.85</td>
</tr>
<tr>
<td>0.5</td>
<td>45.10</td>
<td>90.20</td>
<td>20.60</td>
<td>19.40</td>
<td>9.50</td>
</tr>
<tr>
<td>1.0</td>
<td>1,000</td>
<td>2,000</td>
<td>40.60</td>
<td>30.40</td>
<td>15.00</td>
</tr>
<tr>
<td>2.0</td>
<td>1,000</td>
<td>2,000</td>
<td>40.60</td>
<td>30.40</td>
<td>15.00</td>
</tr>
<tr>
<td>3.0</td>
<td>3,000</td>
<td>6,000</td>
<td>90.60</td>
<td>60.40</td>
<td>45.00</td>
</tr>
<tr>
<td>4.0</td>
<td>8,000</td>
<td>16,000</td>
<td>160.60</td>
<td>120.40</td>
<td>120.00</td>
</tr>
<tr>
<td>6.0</td>
<td>16,000</td>
<td>32,000</td>
<td>240.60</td>
<td>180.40</td>
<td>180.00</td>
</tr>
<tr>
<td>10.0</td>
<td>100,000</td>
<td>200,000</td>
<td>1000.00</td>
<td>500.00</td>
<td>500.00</td>
</tr>
</tbody>
</table>

Example 6

- A 6 MeV electron travels through 3 m of air. By how much is its average energy reduced?
 - A. 0.6 MeV
 - B. 1 MeV
 - C. 2 MeV
 - D. 3 MeV

Need to remember ρ_{air}=0.001 g/cm3.

B. 1 MeV
Assuming linear decrease in energy:

C. 2 MeV

D. 3 MeV

0.2 MeV/m x 3 m=0.6 MeV

Example 7

- A 6 MeV alpha particle produces 20,000 ion pairs per cm. What is the range of the alpha particle?

A. 0.01 mm
B. 0.1 mm
C. 1.0 mm
D. 10.0 mm
E. 100.0 mm

In air the energy to produce one ion pair is \sim34 eV/pair.

Let $E = 6000$ eV.

Since heavy particles move along a straight-line path

$R = \frac{E}{LET}$

$LET = \frac{6MeV}{0.6MeV/cm} = 10cm = 1000mm$

Summary

- Photon interactions
 - Photoelectric effect
 - Compton scattering
 - Pair productions
 - Coherent scattering
- Charged particle interactions
 - Stopping power and range
 - Bremsstrahlung interaction
 - Bragg peak