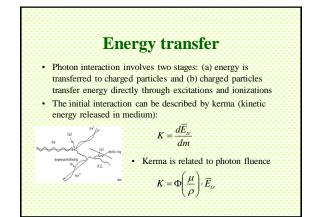
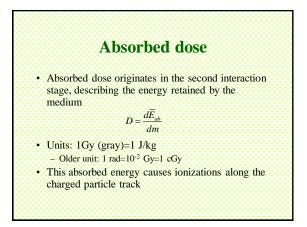
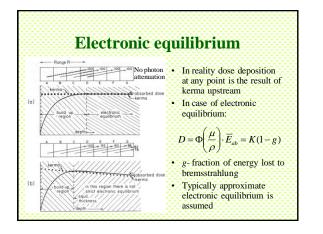

Chapter 7 Measurement of Radiation: Dosimetry

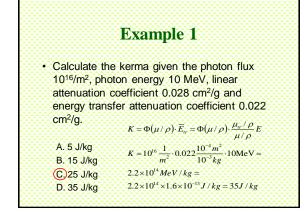

Radiation Dosimetry I

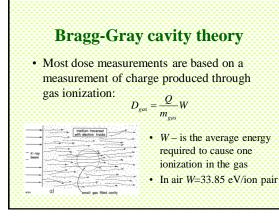

Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radiher

Measurement of radiation

- Description of radiation beam
- · Calculation of the absorbed dose
 - Bragg-Grey cavity theory
 - Practical ion chambers
 - Determination of absorbed dose for energies above 3 MeV
 - Dosimetry of radio-nuclides

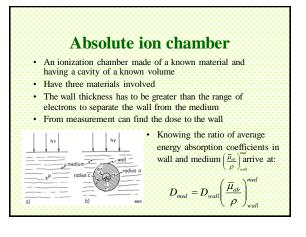




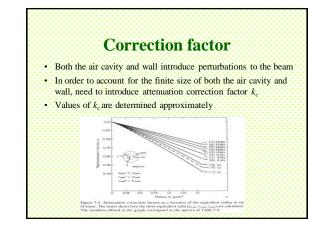


Electronic equilibrium

- Transfer of energy to charged particles (kerma) does not take place at the same location as the absorption of energy deposited by charged particles (dose)
- Kerma can be directly related to the fluence, but dose can be calculated only in the assumption of the *electronic equilibrium*: in any volume as many electrons are stopped as set in motion
- · Under this condition dose is equal to kerma


Bragg-Gray cavity theory

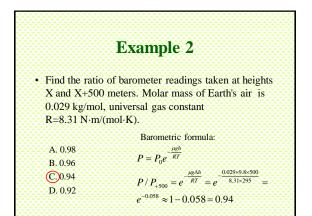
- Can relate the dose in gas to the dose in the surrounding medium ("wall") through the ratio of mean stopping powers in gas and wall
- Bragg-Gray formula relates ionization in the gas cavity to absorbed dose in the medium

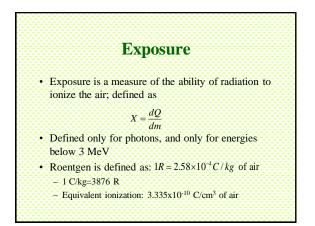

$$D_{wall} = \frac{Q}{m_{gas}} W \cdot \overline{\overline{S}}_{gas}^{wal}$$

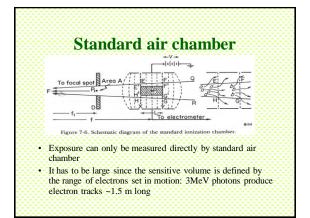
• $\overline{\overline{S}}_{gas}^{wall}$ designate averaging over both photon and electron spectra

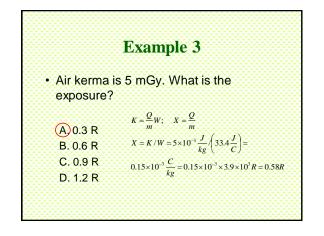
Ratios of Average ater calculated by Nahum (N	TABLE 7-3 ed Restricted Stopping Po	wers for Water to Air, L	water
^{gier} calculated by Nahum (N Table 7-2.	(4) is compared to S^{water}_{air}	calculated using equatio	n 7-10 and giv
Photon Spectrum*	$\overline{S}_{atr}^{water}$ (eq. 7-10)	$\overline{L}_{atr}^{water}$ (Nahum) $\Delta = 10 \text{ keV}$	% Diff.
8 ⁶⁰ Co	1.130		
9 60 Co plus scatter	1.131	1.135	+.4
10 6 MV	1.123	1.129	+.5
12 12 MV	1.102	1.109†	+.6
13 18 MV	1.092	1.101†	+.8
14 26 MV, betatron	1.087	1.092	+.4
15 26 MV, linac	1.094	1.099	+.5
16 35 MV	1.073	1.076†	+.3

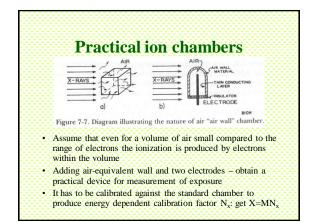
CUCI		ца	10	u (л	IN:	501	N	u	dos
				TABI						
· · · · · · · · · · · · · · · · · · ·	alues of $\left(\frac{\mu_{ab}}{\rho}\right)$	for Ca	rhon. Bakel	ite. Lucite.	and Polyst	vrene and	(<u>#.n</u>) ^{met}	or Water	. Muscle,	
	md Fat Determ	not ined Using	Equation 7	12 for Pb	nton Spect	ra Listed in	Table 7-5			
			_							
			$\left(\frac{\mu_{\infty}}{\rho}\right)$				$\left(\frac{\overline{\mu}_{sh}}{\rho}\right)$			
		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
	(1) Photon	(2)	(3)	(4)	(3)	(0)	0.0	(0)	(19)	
	Spectrum*	Carbon	Bakelite	Lucite	Polyst.	Water	Muscle	Fat	Bone	
	1. 60 kV.	2.399	1.931	1.622	2.518	1.016	1.057	.617	4.873	
	2. 100 kV.	2.112	1.758	1.519	2.152	1.026	1.062	.670	4.524	
	3. 250 kV _p	1.155	1.086	1.056	1.076	1.103	1.098	1.073	1.427	
	 270 kV_p 	1.170	1.098	1.065	1.092	1.100 1.073	1.097	1.060	1.530 2.668	
	 270 kV₂ 400 kV₂ 	1.372	1.253	1.181 1.040	1.303	1.073	1.101	1.095	1.217	
	6. 400 kV, 7. ⁴⁰ Cs	1.129	1.063	1.029	1.032	1.112	1.102	1.112	1.064	
	8. °Co	1.111	1.051	1.029	1.032	1.112	1.103	1.115	1.061	
	9. °°Co	1.116	1.055	1.032	1.037	TIL		1.107	1.105	
	10. 6 MV	1.112	1.053	1.030	1.035	1.111	1.101	1.109	1.065	
	11. 8 MV	1.114	1.055	1.032	1.058	1.109	1.098	1.104	1.057	
	12. 12 MV 13. 18 MV	1.120	1.062	1.039	1.049	1.095	1.090	1.087	1.087	
	14. 26 MV	1.129	1.078	1.049	1.067	1.089	1.078	1.061	1.094	
	15. 26 MV	1.124	1.068	1.044	1.058	1.095	1.084	1.074	1.085	
	16. 35 MV	1.135	1.081	1.056	1.080	1.081	1.069	1.043	1.102	
	17. 45 MV	1.137	1.085	1.059	1.085	1.077	1.065	1.055	1.106	
				000		<pre>/</pre>	med	000		
			= W	O =	- (TT	-)			
				\mathbf{O}	wall	- Ц.,				

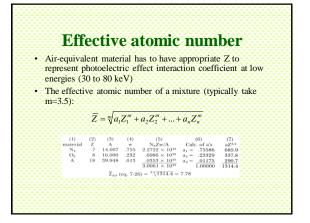


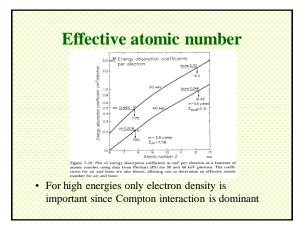

Effect of temperature and pressure

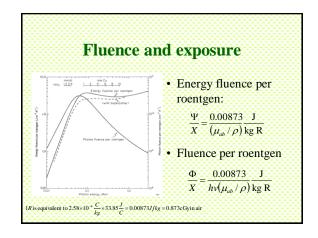

- Since the volume of an ion chamber is fixed, need to correct for change in gas mass due to change in temperature and pressure
- Correction factor relative to conditions of 0°C and 101.3 kPa (760 mm Hg):

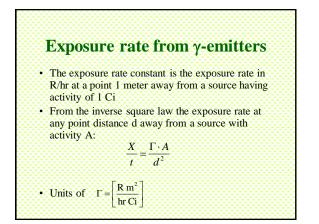

$$k_{TP} = \left(\frac{273.2 + t}{273.2}\right) \left(\frac{101.3}{p}\right)$$

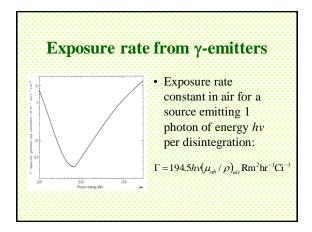

• If the instrument is calibrated for 22°C – adjust the temperature in denominator











Absorbed dose determination above 3 MeV

- · Ion chamber is still used as the basis for measurements
- A set of correction factors is employed to convert the raw measurement to the dose
- AAPM task group protocols for clinical dosimetry of high-energy photon and electron beams:
 - Older TG-21 (1983) is based on exposure (or air-kerma) standard and calibration factor $\left(N_x\right)$
 - New TG-51 (1999) is based on an absorbed-dose to water standard and calibration factor $(N_{\rm D,w})$
 - Parameters are published for ion chambers from different manufacturers

]	Example 4
corners of a 1 cr attenuation, the	25 seeds are arranged at the n square. Neglecting tissue exposure rate in tissue at the are is: (Exposure rate constant = hr)
A. 3 15 R/hr B. 376 R/h C. 264 R/hr D. 192 R/hr E. 350 R/hr	$\frac{X}{t} = \frac{4\Gamma \cdot A}{d^2} = \frac{4 \times 1.46 \times 30}{(\sqrt{2 \cdot 0.5^2})^2} = 350.4 \mathrm{R/hr}$

	Example 5					
12.9 R cm ² (HVLs) of	The rate constant for a radionuclide is P(mCi h). How many half-value layers shielding are required to reduce the ate from a 19.5 mCi source at 2 m to mR/h? $\frac{X}{t} = \frac{\Gamma \cdot A}{d^2} = \frac{12.9 \cdot 19.5}{200^2} =$ 0.00629R/h ≈ 6.3 mR/h $\frac{6.3}{2^n} < 1 \implies n > \frac{\ln 6.3}{\ln 2} = 2.65 \implies n = 3$					