Introduction to Numerical Modeling and Device Modeling

Lecture 1

Special Topics: Device Modeling

Outline

• Numerical modeling
 – Terminology
 – Basic operations
 – Examples of simple algorithms
 – Sources of error
• Modeling physical systems
 – Main steps and considerations

Introduction

• Most real-world applications lead to mathematical problems which cannot be solved with exact formulas, or analytically
• A common approach is to reduce a problem to special cases and simplified situations, and study those in detail
• The aim is to uncover generally applicable concepts and properties, which can guide us in more difficult problems

Numerical modeling: terminology

Sequences and series

• A sequence is a (possibly infinite) collection of numbers lined up in some order
• A series is a (possibly infinite) sum
 – Example: Taylor’s series

\[T_n(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x-x_0)^k \]

\[f(x) = f(x_0) + \frac{1}{2!} f'(x_0)(x-x_0) + \frac{1}{3!} f''(x_0)(x-x_0)^2 + \ldots + \frac{1}{n!} f^{(n)}(x_0)(x-x_0)^n \]

Example: sine function approximated by Taylor series expansion

The approximation of \(f(x)=\sin x \), around \(x=0 \) by the Taylor series becomes more accurate (better over a larger interval around the center) with the number of terms increasing from 1 to 13
Numerical modeling: terminology

Convergence and divergence
• Sequence \((a_j)\) with \(j=[0,\infty]\) is said to be \(\varepsilon\)-close to a number \(b\) if there exists a number \(N \geq 0\) (it can be very large), such that for all \(n \geq N\), \(|a_j - b| \leq \varepsilon\).
• A sequence \((a_j)\) with \(j=[0,\infty]\) is said to converge to \(b\) if it is \(\varepsilon\)-close to \(b\) for all \(\varepsilon > 0\) (however small).
• Notation: \(a_j \to b\), or \(\lim_{j \to \infty} a_j = b\).
• If a sequence does not converge, it diverges.

Examples: converging and diverging sequences
• Unbounded sequences, i.e., sequences that contain arbitrarily large numbers, always diverge.
• \(e^{-n} \to 0\) as \(n \to \infty\), and convergence is very fast.
• \(n/(n + 2) \to 1\) as \(n \to \infty\), and convergence is rather slow.
• \(\log(n) \to \infty\) as \(n \to \infty\), so the sequence diverges.

Numerical modeling: terminology

Convergence and divergence
• Define the \(N\)th partial sum \(S_N = a_1 + a_2 + \ldots + a_n = \sum_{j=1}^{n} a_j\).
• The series \(\sum a_j\) converges if the sequence of partial sums \(S_N\) converges to some number \(b\) as \(N \to \infty\).
• Notation: \(\sum a_j = b\).
• If a series does not converge, it diverges.

Examples: converging and diverging series
• Geometric series converges for \(|x|<1\)
 \[\sum_{j=0}^{\infty} x^j = 1 + x + x^2 + \ldots = \frac{1}{1-x}\]
• Harmonic series diverges
 \[\sum_{j=1}^{\infty} \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots\]
• Series \(\sum_{j=0}^{\infty} (-1)^j = 0 + 1 + 0 + 1 + \ldots\) also diverges.

Numerical modeling: terminology
• Discretization is the process of transferring continuous functions, models, and equations into discrete counterparts.
 • Usually carried out as a first step toward making them suitable for numerical evaluation and implementation as a computer program.
• Iteration (from the Latin iterare, “to plow once again”) is a repetition of a mathematical or computational procedure applied to the result of a previous application, typically as a means of obtaining successively closer approximations to the solution of a problem.
• Iterative methods are used to produce approximate numerical solutions to mathematical problems.
• When programmed, implemented through loops.
Example: Solution of an equation $x = F(x)$ using the method of iterations

- Start with an initial approximation x_0, and compute the sequence $x_0 = F(x_0), x_1 = F(x_1), x_2 = F(x_2), \ldots$
- Each computation of the type $x_{n+1} = F(x_n)$ is called a fixed-point iteration: as n grows we would like x_n to be closer to the root
- If the sequence $\{x_n\}$ converges to a limiting value α, then $x = \alpha$ is the root: $\alpha = F(\alpha)$

Converging iterations

Diverging iterations

Numerical modeling:

- Interpolation
- Derivatives
- Integration
- Root finding
 - Nonlinear equations
 - Differential equations

Interpolation

- Experiment is usually represented by a discrete set of datapoints $\{(x_i, f(x_i))\}$; interpolation is required to find the value of $f(x_k)$ for any arbitrary point x_k
- Often we want an analytical function describing the whole data set
- One of the most useful and well-known approaches to functions mapping over a range of values is with the algebraic polynomials

$P_n(x) = a_0 + a_1 x + \ldots + a_n x^n$

- Taylor's polynomials are good approximation at one point x_0

Differentiation

- The derivative of the function f at x_0 is defined as

$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

- General approximation would be to compute for small h:

$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$

- Two problems with this approach using numerically:
 - Very small h - division by zero
 - Subtract two numbers which only differ by a small amount

- Can reduce the error by using both forward- and backward differences

\[
 f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + O(h^2)
\]

- Neglecting $O(h^2)$ leads to error $\approx h$

- Start with Taylor series for $f(x_0 + h)$ and express first derivative:

\[
 f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \left(\frac{h}{2!} f''(x_0) + \frac{h^2}{3!} f'''(x_0) + \ldots \right)
\]

Forward difference for $h>0$, backward difference for $h<0$
Numerical modeling: integration

• Evaluation of definite integral of a function as numerical quadrature:
 \[\int_a^b f(x)dx = \sum_{i=1}^{n} f(x_i)\Delta x_i \]
 Divide interval into multiple slices, and find area under the curve over interval \([a,b]\)
• Simplest approximation with rectangles; slightly more sophisticated: trapezoid rule, Simpson’s rule

\[\sum f(x_i)\Delta x_i = \int_a^b f(x)dx \]

The \([a,b]\) is divided into \(N\) intervals, equally spaced by
\[h = x_i - x_{i-1} \]

• Trapezoid rule:
• Simpson’s rule: approximate function with parabola over each interval

\[\int_a^b f(x)dx = \sum_{i=0}^{N} [f(a) + f(a+h) + 2f(a + 2h) + \ldots + f(b)] \]

Use 3 points for each interval, number of intervals should be even

Numerical modeling: root finding

• Finding a root, or solution, of an equation of the form \(f(x) = 0\), for a given function \(f\)
 – Also called a zero of the function \(f\)
• Selection of a particular numerical method depends on the equation type: linear, non-linear, differential (ordinary or partial)
• System of equations

Numerical modeling: nonlinear equations

• Newton’s (or the Newton-Raphson) method exploits derivatives of \(f(x)\) to accelerate conversion to \(f(p)=0\)
• Start with Taylor’s expansion of the \(f(x)\) about \(p_0\), which is close to the root \(p\), and neglect terms of second order, since \(p - p_0\) is small
 \[p = p_0 - \frac{f(p_0)}{f'(p_0)} \]
 \[p_1 = p_0 - \frac{f(p_0)}{f'(p_0)} \]
• After \(n\) iterations:
 \[p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} \]
 for \(n \geq 1 \)
• Stop when rel. error objective is reached

Wolfram website: http://www.wolframalpha.com

Numerical modeling: differential equations

• Principally, divided into two categories:
 – the ordinary differential equations (ODE) which contain functions of only one independent variable
 – the partial differential equations (PDE) having functions of several independent variables
• ODEs can themselves be grouped into subcategories according to their order \(n\) and whether they are linear
• Most general form of ODE: \(F(x,y,y',y'', \ldots ,y^{(n)})=0\)
Numerical modeling: differential equations

- In solving differential equation we make distinction between the general and a particular solution
 - Example: equation \(y' = y \) has the general solution \(y = Ce^x \), where \(C \) is an arbitrary constant
- Every \(n \)th order ODE has \(n \) integrating constants, that can be either the initial values, or boundary conditions (determined at the integration limits) leading to initial value or boundary condition problems
 - Same for first-order differential equations

\[y'(x) = -2xy(x) \]
\[y(0) = 5 \]
\[[0,3] \]

Sample solution: http://www.wolframalpha.com

Numerical modeling: differential equations

- Euler method: first order ODE with initial value
 - Consider the problem of calculating the shape of a curve \(f(x) \): it starts at a given point \(x_0 \) (initial value) and satisfies a given differential equation, so we can calculate the derivative at \(x_0 \) (find tangent)
 - Take a small step \(h \) along the tangent and repeat the procedure

\[
\begin{align*}
 y_{n+1} & = y_n + hf(x_n, y_n) \\
 y(0) & = 5
\end{align*}
\]

\[y'(x) = f(x, y(x)), \quad y(x_0) = y_0 \]

Numerical modeling: differential equations

- Finite differences method - finite differences approximate the derivatives
- Finite elements method subdivides a large problem into smaller, simpler, parts - finite elements (FE’s)
- The simple equations that model these FE’s are then assembled into a larger system of equations that models the entire problem
- FEM then uses variational methods to approximate a solution by minimizing an associated error function

Numerical modeling: matrices

- Two principal computational problems are associated with matrices
 - Systems of linear equations: \(Ax = b \)
 - Eigenvalue problems: \(Ax = \lambda x \)
- Calculation of determinants (\(\det A, \det (A - \lambda I) \))
- Typical problems: large round-off errors (iterative approaches such as Gaussian elimination), ill-conditioned matrices (\(\det A \) close to 0, solution is unstable)
Numerical modeling: Monte Carlo simulations

- Multiple real-life processes are stochastic in nature: characterized by probability distribution and expectation value.
- Monte Carlo simulations are designed to repeat the same process very large number of times to obtain the solution close to the expectation value.
- Rely heavily on random number generators.
 - Eventually the sequence of numbers from the generator will repeat itself.

Numerical modeling: errors

- The accuracy is always lower than in analytical solution.
- Sources of error:
 - Errors in given input data, operator error, etc.
 - Simplification error
 - Rounding (or chopping) error during computation
 - Truncation error (e.g., an infinite series is broken off after a finite number of terms)
 - Discretization error

Modeling physical system

- Model is defined through:
 - Objectives: problem formulation
 - A set of governing equations
 - Geometry
 - Boundary conditions (or initial values)
 - Material properties and other parameters
- Most models do not have simple analytical solution.
 - Example: calculation of the motion of a cannon ball in two dimensions if include drag force.

Modeling physical system: Problem formulation

- The general goal of modeling is to improve understanding of physical processes.
- It is critical to define the specific goals of a problem formulation.
- Example: drug delivery through skin, using a patch.
- The general problem is quite complex.

Modeling physical system: Problem formulation (image)

Goal: to study the drug transport primarily in the skin region.

Goal: to study the drug transport inside the patch as well as in the skin.

Modeling physical system: Geometry

- The computational domain is the chosen region of the physical domain (actual geometry) where computations will be performed.
- The larger the computational domain, the more computation is required.
- Choice of 1D vs 2D vs 3D
- How can symmetry be used to reduce the domain?
- What regions need to be included.
Modeling physical system: Geometry

Example: arterial tissue surrounding blood

Modeling physical system: Governing equations

- We need as many equations to describe the model as there are distinct “physics”
- Example: to model transport processes in a biomedical system have to consider three most distinct “physics” - fluid flow, heat transfer, and mass transfer. The following equations should be included:
 - Conservation equation for total mass (continuity equation)
 - Momentum conservation equations (fluid flow equations)
 - Energy conservation equation (heat transfer equation)
 - Mass species conservation equation (mass transfer equation)

Modeling physical system: Governing equations

- Next simplification step: what terms should remain in the governing equations
- Transient or steady-state (time dependence)
- Gradient terms and resultant transport vs uniform distributions
- Generation (depletion) or source (sink) terms
- If approximating functions – how many terms to retain?

Modeling physical system: Boundary conditions

- Boundary conditions are statements describing how the process relates to its surroundings
 - alternatively, initial conditions are specified
- How many boundary conditions are needed
 - all of the external boundaries of the computational domain need boundary conditions for each of the primary variables
- What they are specifically – opportunity for simplification

Modeling physical system: Boundary conditions

- Less realistic: the patch will lose drug while tissue will gain

Modeling physical system: Material properties

- Are we likely to find the property data needed for the exact material that we need?
- Can we estimate the property using empirical predictive equations
- Possible substitutions, simplifications, and their effect on the accuracy of the solution
- Uniform vs. non-uniform properties
- Best decided at the problem formulation stage
Summary

- Most real-world applications lead to mathematical problems which cannot be solved with exact formulas, or analytically
- A common approach is to reduce a problem to special cases and simplified situations, and study those in detail
- Errors accumulate through every simplification step at the model level, and at every approximation related to model implementation

References