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Cavity Theory 

Chapter 10 

 

F.A. Attix, Introduction to Radiological 

Physics and Radiation Dosimetry 

Outline 

• Problem statement 

• Bragg-Gray cavity theory 

• Spencer cavity theory 

• Burlin cavity theory 

• Dose near interfaces between 

dissimilar media 

• Summary 

Cavity Theory: Problem 

Statement 
• Homogeneous medium, 

wall (w)  

• Probe - cavity - thin layer 
of gas (g)  

• Charged particles crossing 
w-g interface 

• Objective: find a relation 
between the dose in a probe 
to that in the medium 

• Basis for dosimetry 
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Bragg-Gray Theory 

(A) A fluence  of charged particles crossing an interface between media w and g 

(B) A fluence  of charged particles passing through a thin layer of medium g 

sandwiched between regions contain medium w 

Fluence  is assumed to be continuous across all interfaces; it is related to the dose 

Bragg-Gray Theory 

• Charged particles of fluence 

, kinetic energy T 

• Dg, Dw - absorbed doses on 

each side of the boundary 

•          - mass collision stopping 

power, evaluated at energy T 

• Assuming  continuous 

across the interface 
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Bragg-Gray Theory 

• Two conditions: 

– Thickness of g layer is much smaller than the range of 

charged particles (medium g is close to w in atomic 

number) 

– The absorbed dose in the cavity is deposited entirely by 

the charged particles crossing it 

• Additional assumptions: 

– Existence of CPE 

– Absence of bremsstrahlung generation 

– No backscattering 
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Bragg-Gray Theory 
For differential energy distribution T, average mass 

collision stopping power 
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Bragg-Gray Theory 

For charge Q (of either sign) produced in gas of mass m by 
radiation, the dose in gas 

 

Then the B-G relation expressed in terms of cavity ionization: 

 

 

 

This equation allows calculating the absorbed dose in the medium 
immediately surrounding a B-G cavity, based on the charge 
produced in the cavity gas, provided that the parameters are known 
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Bragg-Gray Theory 

• As long as         is evaluated for the charged-particle 

spectrum T that crosses the cavity, the B-G relation 

requires neither CPE nor a homogeneous field of radiation 

• The charged-particle fluence T must be the same in the 

cavity and in the medium w 

• If CPE does exist in the neighborhood of a point of interest 

in the medium w, then the insertion of a B-G cavity at the 

point may be assumed not to perturb the “equilibrium 

spectrum” of charged particles existing there 
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Bragg-Gray Theory 

• First Bragg-Grey Corollary: two different 

gases filling the cavity 

 

 

• Second Bragg-Grey Corollary: two chambers 

(walls) of different volume and material 

 
 

2

1

2

1

1

2

1

2

/

/ g

gm S
eW

eW

V

V

Q

Q






 

  2

1

1

2

/

/

en

en

1

2

1

2

w

gm

w

gm

w

w

S

S

V

V

Q

Q






Spencer derivation of B-G 

• Consider a small cavity filled with medium g, 
surrounded by a homogeneous medium w that 
contains a homogeneous source emitting N 
identical charged particles per gram, each with 
kinetic energy T0 (MeV) 

• The cavity is assumed to be far enough from the 
outer limits of w that CPE exists 

• Both B-G conditions are assumed to be satisfied 
by the cavity, and bremsstrahlung generation is 
assumed to be absent 

Spencer derivation of B-G 

• The absorbed dose at any point in the undisturbed 

medium w where CPE exists: 

 

• For an equilibrium charged-particle fluence spectrum 

e
T  the absorbed dose 

 

• Then the spectrum 

 
w

e

T
dxdT

N




(MeV/g)    0

CPE

NTKD ww 

dT
dx

dT
D

w

T
e

Tw  









0

0 



3 

Spencer derivation of B-G 

• Example of an equilibrium fluence spectrum, e
T = N/(dT/dx), 

of primary electrons under CPE conditions in water, assuming 

the continuous-slowing-down approximation 

Start with mono-

energetic source 

of T0=2MeV 

Spencer derivation of B-G 

• Assuming the same spectrum on both sides, ratio 
of the dose in the cavity to that of the medium w 

 

 

 

• Can be generalized to accommodate 
bremsstrahlung generation by electrons 
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Averaging of Stopping Powers 

• Extend a single starting energy T0 to a distribution T 

(spectrum): stopping power has to be integrated over 

the distribution T 

 

 

 

 

 

• Ratio of collision stopping powers is a slowly varying 

function, therefore average energy      may be used T
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each T0, and over 

T for each T0 

B-G Cavity Theory vs. Experiment 

Comparison of measured ionization densities (solid curves) in flat air-filled ion 

chambers having various wall materials and adjustable gap widths, with Bragg-Gray 

theory (tick marks at left) and Spencer theory (dashed curves), for 198Au  rays 

B-G Cavity Theory vs. Experiment 

• Experiments had shown deviations from B-G 
theory 

• Dependence on cavity size and Z 

• For walls of high atomic number d-ray 
production becomes an issue 

–  d-rays cross the cavity with the rest of electrons 

–  they change spectrum, enhancing low energy 
part 

• Spencer theory 

Spencer Cavity Theory 

• Goals: to account for d-rays and cavity size effect 

• Starts with two B-G conditions (narrow g region and 

dose produced by crossing particles) and two 

additional assumptions (existence of CPE and 

absence of bremsstrahlung generation) 

• Introduces mean energy D, needed to cross the cavity 

• Based on their energy T, electrons in a spectrum are 

divided into „fast‟ (         ) and „slow‟ (         ) groups DT DT
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Spencer Cavity Theory 

• For monoenergetic electron beam with T0 emitting N particles 

per gram through a homogeneous medium w the absorbed dose 

is expressed in terms of restricted stopping power 

 

 

• The equilibrium spectrum including d-rays 

 

 

• R(T,T0) – ratio of differential electron fluence, including d-rays 

to that of primary electrons alone 
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Spencer Cavity Theory 

Spectrum enhanced many-fold at low electron energies 

Approximate Values of R(T0,T) = e,d
T/e

T, the Ratio of the 

Differential Electron Fluences with and without d-rays 

Spencer Cavity Theory 
Spencer Cavity Theory 

• Taking into account adjustment for electron spectrum, 
dose to the wall 

 

 

 

•  D regulates the cavity size; for D=0 

 

• Dose to the cavity 
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Spencer Cavity Theory 

• Ratio of doses in cavity and wall 

 

 

 

 

 

• Works well for small cavities (electron range is 
much larger than the cavity size) 

• If actual spectrum of crossing charged particles is 
known, can replace the ratio term 
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Spencer Cavity Theory 

cavity size 

Better agreement between Spencer and B-G for large cavity sizes 

Values of Dg/Dw Calculated for Air Cavities by Spencer from Spencer Cavity 

Theory, vs. Bragg-Gray Theory 
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Spencer Cavity Theory 

• The Spencer cavity theory gives somewhat better 
agreement with experimental observations for small 
cavities than does simple B-G theory, by taking 
account of d-ray production and relating the dose 
integral to the cavity size 

• However, it still relies on the B-G conditions, and 
therefore fails to the extent that they are violated 

• In particular, in the case of cavities that are large 
(i.e., comparable to the range of the secondary 
charged particles generated by indirectly ionizing 
radiation), neither B-G condition is satisfied 

Burlin Cavity Theory 

•  -ray cavity theory, for intermediate cavity size 

e1 – crossers       e3 – stoppers 

e2 – starters        e4 – insiders 

small intermediate large 

Burlin Cavity Theory 
To arrive at a usefully simple theory Burlin made the following 

assumptions, either explicitly or implicitly: 
 

1. The media w and g are homogeneous. 
2. A homogeneous -ray field exists everywhere throughout w and g.  (This 

means that no -ray attenuation correction) 
3. Charged-particle equilibrium exists at all points that are farther than the 

max electron range from the cavity boundary 
4. The equilibrium spectra of secondary electrons generated in w and g are 

the same 
5. The fluence of electrons entering from the wall is attenuated exponentially 

as it passes through the medium g, without changing its spectral 
distribution. 

6. The fluence of electrons that originate in the cavity builds up to its 
equilibrium value exponentially as a function of distance into the cavity, 
according to the same attenuation coefficient  that applies to the incoming 
electrons 

Burlin Cavity Theory 

e- 

electrons generated  

in the wall 

electrons generated  

in the cavity 

Burlin Cavity Theory 
• Cavity relation accounts for 2 sources of electrons 

depositing dose  

 

 

• Parameter is related to the cavity size, expressed as 

 

 

• l is the distance (cm) of any point in the cavity from the 

wall, along a mean chord of length L 
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Burlin Cavity Theory 

• Parameter d~1 for small, d~0 for large 

cavities 

• The corresponding relation for 1 – d, 

representing the average value of g/
e
g 

throughout the cavity: 
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Burlin Cavity Theory 

• For the nonhomogeneous case where g  w, (e
w  e

g) 

• Moreover, if the -value of the cavity medium for the wall 

electrons is not the same as for the cavity-generated 

electrons, due to a difference in spectral distributions, then 

in general 

 

 

    and hence 

 

• The Burlin theory ignores this possible source of error in 

adopting assumptions 5 and 6 
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Burlin Cavity Theory 

• Theory works well for wide range of cavity sizes 
and materials 

• Parameter  estimated for air-filled cavity 

 

 

 

 

• Tmax – max starting energy, tmax – max electron 
penetration depth 
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Burlin Cavity Theory Verification 

Top view 

Side view 

Burlin Cavity Theory Verification 

Dose distribution across the cavity of increasing size 

Burlin Cavity Theory Verification 

Good agreement for polystyrene and aluminum wall media 

In higher-Z materials 

electron backscattering 

is important 

The Fano Theorem 

• In practice the requirement for small cavity is ignored 
by matching atomic numbers of wall and cavity 
materials 

• Theorem statement: 

In an infinite medium of given atomic composition 
exposed to a uniform field of indirectly ionizing 
radiation, the field of secondary radiation is also 
uniform and independent of the density of the 
medium, as well as of density variations from point to 
point 

• Proof employs radiation transport equations 
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Other Cavity Theories 

Kearsly theory – modification of Burlin‟s theory, accounts for 

electron scattering; predicts dose distribution across the cavity 

Other Cavity Theories 

• Luo Zheng-Ming (1980) has developed a cavity 
theory based on application of electron transport  
equation in the cavity and surrounding medium. It is 
very detailed and provides good agreement with 
experiment 

• The effort to develop new and more complicated 
cavity theories may be diminishing due to strong 
competition with Monte Carlo methods  

• Simple theories will always be useful for approximate 
solution and estimates 

Dose near interfaces between 

dissimilar media 

Depends on 

relative atomic 

numbers 

Dose near interfaces between 

dissimilar media 

Dose near interfaces between 

dissimilar media 
• A minimum is observed just beyond the interface 

when the photons go from a higher-Z to a lower-Z 
medium 

• A maximum is observed just beyond the interface 
when the photons go from a lower-Z to a higher-Z 
medium 

• Tissue-bone interface is an example 

high-Z low-Z 

 

 

Summary 

• Bragg-Gray theory – works best for small 

cavities, media of similar atomic numbers 

• Spencer theory – includes delta rays, cavity 

size effect 

• Burlin theory – for a range of cavity sizes, 

no electron scattering included 

• Cavity theories create a basis for dosimetry 


