Cavity Theory

Chapter 10

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Outline

- Problem statement
- Bragg-Gray cavity theory
- Spencer cavity theory
- Burlin cavity theory
- Dose near interfaces between dissimilar media
- Summary

Bragg-Gray Theory

For charge Q (of either sign) produced in gas of mass m by radiation, the dose in gas

$$D_g = \frac{Q}{m} \left(\frac{W}{e}\right)$$

Then the B-G relation expressed in terms of cavity ionization:

$$D_{w} = \frac{Q}{m} \left(\frac{\overline{W}}{e}\right)_{g} \cdot_{m} \overline{S}_{g}^{v}$$

This equation allows calculating the absorbed dose in the medium immediately surrounding a B-G cavity, based on the charge produced in the cavity gas, provided that the parameters are known

Bragg-Gray Theory

- As long as $_{g}\overline{S}_{g}^{w}$ is evaluated for the charged-particle spectrum Φ_{T} that crosses the cavity, the B-G relation requires neither CPE nor a homogeneous field of radiation
- The charged-particle fluence Φ_T must be the same in the cavity and in the medium *w*
- If CPE does exist in the neighborhood of a point of interest in the medium *w*, then the insertion of a B-G cavity at the point may be assumed not to perturb the "equilibrium spectrum" of charged particles existing there

Bragg-Gray Theory

• First Bragg-Grey Corollary: two different gases filling the cavity

$$\frac{Q_2}{Q_1} = \frac{\rho_2 V}{\rho_1 V} \cdot \frac{\left(\overline{W} / e\right)_1}{\left(\overline{W} / e\right)_2} \cdot_m \overline{S}_{g_1}^{g_2}$$

• Second Bragg-Grey Corollary: two chambers (walls) of different volume and material

$$\frac{Q_2}{Q_1} = \frac{V_2}{V_1} \cdot \frac{\left(\overline{\mu}_{en} / \rho\right)_{w_2}}{\left(\overline{\mu}_{en} / \rho\right)_{w_1}} \cdot \frac{m \overline{S}_g^{w_1}}{m \overline{S}_g^{w_2}}$$

Spencer derivation of B-G

- Consider a small cavity filled with medium g, surrounded by a homogeneous medium w that contains a homogeneous source emitting N identical charged particles per gram, each with kinetic energy T₀ (MeV)
- The cavity is assumed to be far enough from the outer limits of *w* that CPE exists
- Both B-G conditions are assumed to be satisfied by the cavity, and bremsstrahlung generation is assumed to be absent

Spencer derivation of B-G

• The absorbed dose at any point in the undisturbed medium *w* where CPE exists:

$$D_w = K_w = NT_0$$
 (MeV/g)

• For an equilibrium charged-particle fluence spectrum Φ^{e}_{T} the absorbed dose

$$D_{w} = \int_{0}^{T_{0}} \Phi_{T}^{e} \left(\frac{dT}{\rho dx}\right)_{w} dx$$

• Then the spectrum

$$\Phi_T^e = \frac{N}{\left(\frac{dT}{\rho dx}\right)}$$

Spencer derivation of B-G

• Assuming the same spectrum on both sides, ratio of the dose in the cavity to that of the medium w

$$\frac{D_g}{D_w} = \frac{1}{T_0} \int_0^{T_0} \frac{\left(dT/\rho dx\right)_g}{\left(dT/\rho dx\right)_w} dT =_m \overline{S}_w^g$$

• Can be generalized to accommodate bremsstrahlung generation by electrons

$$\frac{D_{g}}{D_{w}} = \frac{1}{T_{0}[1 - Y_{w}(T_{0})]} \int_{0}^{T_{0}} \frac{(dT/\rho dx)_{c,g}}{(dT/\rho dx)_{c,w}} dT = _{m} \overline{S}_{w}^{g}$$

Averaging of Stopping Powers • Extend a single starting energy T_0 to a distribution T(spectrum): stopping power has to be integrated over the distribution T $\frac{D_g}{D_w} = \frac{\int_0^{T_{max}} N_{T_0} \int_0^{T_0} (\frac{dT/\rho dx}{(dT/\rho dx)_w})}{\int_{T_{max}} N_{T_0} T_0 [1-Y_w(Y_0)] dT_0} = m_{\overline{S}_w}^{\overline{S}_w}$

• Ratio of collision stopping powers is a slowly varying function, therefore average energy \overline{T} may be used

B-G Cavity Theory vs. Experiment

- Experiments had shown deviations from B-G theory
- Dependence on cavity size and Z
- For walls of high atomic number δ-ray production becomes an issue
 - $-\delta$ -rays cross the cavity with the rest of electrons
 - they change spectrum, enhancing low energy part
- Spencer theory

Spencer Cavity Theory

- Goals: to account for δ -rays and cavity size effect
- Starts with two B-G conditions (narrow *g* region and dose produced by crossing particles) and two additional assumptions (existence of CPE and absence of bremsstrahlung generation)
- Introduces mean energy Δ , needed to cross the cavity
- Based on their energy *T*, electrons in a spectrum are divided into 'fast' (*T* ≥ ∆) and 'slow' (*T* < ∆) groups

Spencer Cavity Theory

• For monoenergetic electron beam with T₀ emitting N particles per gram through a homogeneous medium *w* the absorbed dose is expressed in terms of restricted stopping power

$$D_{w} \stackrel{\text{CPE}}{=} NT_{0} = \int_{\Delta}^{T_{0}} \Phi_{T}^{e,\delta} \cdot {}_{m}S_{w}(T,\Delta) dT$$

• The equilibrium spectrum including δ-rays

$$\Phi_T^{e,\delta} = \frac{NR(T_0,T)}{\left(dT \,/\, \rho dx\right)_w}$$

• $R(T,T_0)$ – ratio of differential electron fluence, including δ -rays to that of primary electrons alone

Spencer Cavity Theory

Approximate Values of $R(T_0,T) = \Phi^{e,\delta} \tau' \Phi^e_T$, the Ratio of the Differential Electron Fluences with and without δ -rays

	Alexandra Alexandra				
T/T_0	С	Al	Cu	Sn	Pb
1.00	1.00	1.00	1.00	1.00	1.00
0.50	1.00	1.00	1.00	1.00	1.00
0.25	1.05	1.05	1.06	1.06	1.07
0.125	1.21	1.23	1.25	1.27	1.29
0.062	1.60	1.66	1.73	1.79	1.85
0.031	2.4	2.6	2.8	2.9	3.1
0.016	4.4	4.7	5.2	5.5	6.0
0.008	8.5	9.4	10.5	11.3	12.3
0.004	17	19	22	24	_

Spectrum enhanced many-fold at low electron energies

• Taking into account adjustment for electron spectrum, dose to the wall

$$D_{w} \stackrel{\text{CPE}}{=} NT_{0} = N \int_{\Delta}^{T_{0}} \frac{R(T_{0},T)}{\left(dT / \rho dx\right)_{w}} \cdot {}_{m}S_{w}(T,\Delta) dT$$

- Δ regulates the cavity size; for $\Delta = 0$ $R(T_0, T) = \frac{(dT/\rho dx)_w}{wS_w(T, \Delta)}$
- Dose to the cavity

$$D_{g} = N \int_{\Delta}^{T_{0}} \frac{R(T_{0},T)}{(dT/\rho dx)_{w}} \cdot {}_{m}S_{g}(T,\Delta) dT$$

	cavity size		D_t/D_u						
Wall Medium			Spencer						
	T_0 (keV)	Δ (keV) = Range (mm) =	2.5 0.015	5.1 0.051	10.2 0.19	20.4 0.64	40.9 2.2	81.8 7.2	Bragg- Gray
С	1308		1.001	1.002	1.003	1.004	1.004	1.005	1.005
	654		0.990	0.991	0.992	0.992	0.993	0.994	0.994
	327		0.985	0.986	0.987	0.988	0.988	0.989	0.989
AI	1308		1.162	1.151	1.141	1.134	1.128	1.123	1.117
	654		1.169	1.155	1.145	1.137	1.131	1.126	1.125
	327		1.175	1.161	1.151	1.143	1.136	1.130	1.134
Cu	1308		1.456	1.412	1.381	1.359	1.340	1.327	1.312
	654		1.468	1.421	1.388	1.363	1.345	1.329	1.327
	327		1.485	1.436	1.400	1.375	1.354	1.337	1.353
Sn	1308		1.786	1.694	1.634	1.592	1.559	1.535	1,508
	654		1.822	1.723	1.659	1.613	1.580	1.551	1.547
	327		1.861	1.756	1.687	1.640	1.602	1.571	1.595
РЬ	1308			2.054	1.940	1.865	1.811	1.770	1.730
	654			2.104	1.985	1.904	1.848	1.801	1.796
	327			2.161	2.030	1.946	1.881	1.832	1.876

Spencer Cavity Theory

- The Spencer cavity theory gives somewhat better agreement with experimental observations for small cavities than does simple B-G theory, by taking account of δ-ray production and relating the dose integral to the cavity size
- However, it still relies on the B-G conditions, and therefore fails to the extent that they are violated
- In particular, in the case of cavities that are large (i.e., comparable to the range of the secondary charged particles generated by indirectly ionizing radiation), neither B-G condition is satisfied

Burlin Cavity Theory

• γ-ray cavity theory, for intermediate cavity size

Burlin Cavity Theory

To arrive at a usefully simple theory Burlin made the following assumptions, either explicitly or implicitly:

- The media w and g are homogeneous.
 A homogeneous γ-ray field exists everywhere throughout w and g. (This means that no γ-ray attenuation correction)
 Charged-particle equilibrium exists at all points that are farther than the
- 3. Charged-particle equilibrium exists at all points that are farther than the max electron range from the cavity boundary
- The equilibrium spectra of secondary electrons generated in w and g are the same
 The fuence of electrons entering from the wall is attenuated exponential
- The fluence of electrons entering from the wall is attenuated exponentially as it passes through the medium g, without changing its spectral distribution.
- 6. The fluence of electrons that originate in the cavity builds up to its equilibrium value exponentially as a function of distance into the cavity, according to the same attenuation coefficient β that applies to the incoming electrons

Burlin Cavity Theory

Cavity relation accounts for 2 sources of electrons
 depositing dose

$$\frac{\overline{D}_g}{D_w} = d \cdot {}_m \overline{S}_w^{g} + (1 - d) \left(\frac{\overline{\mu}_{en}}{\rho}\right)_w^g$$

• Parameter is related to the cavity size, expressed as

$$d \equiv \frac{\bar{\Phi}_w}{\Phi_w^e} = \frac{\int_0^L \Phi_w^e e^{-\beta l} dl}{\int_0^L \Phi_w^e dl} = \frac{1 - e^{-\beta L}}{\beta L}$$

• *l* is the distance (cm) of any point in the cavity from the wall, along a mean chord of length *L*

Burlin Cavity Theory

- Parameter d~1 for small, d~0 for large cavities
- The corresponding relation for 1 d, representing the average value of Φ_g/Φ_g^e throughout the cavity:

$$1-d \equiv \frac{\overline{\Phi}_g}{\Phi_g^e} = \frac{\int_0^L \Phi_g^e \left(1-e^{-\beta l}\right) dl}{\int_0^L \Phi_g^e dl} = \frac{\beta L + e^{-\beta L} - 1}{\beta L}$$

Burlin Cavity Theory

- For the nonhomogeneous case where $g \neq w$, $(\Phi^e_w \neq \Phi^e_p)$
- Moreover, if the β -value of the cavity medium for the wall electrons is not the same as for the cavity-generated electrons, due to a difference in spectral distributions, then in general

$$\frac{\Phi_g}{\Phi_g^e} \equiv d' \neq (1 - d)$$

and hence

 $d' + d \neq 1$

• The Burlin theory ignores this possible source of error in adopting assumptions 5 and 6

Burlin Cavity Theory

- Theory works well for wide range of cavity sizes and materials
- Parameter β estimated for air-filled cavity

$$\beta = \frac{16\rho}{(T_{\text{max}} - 0.036)^{1.4}}$$

• T_{max} – max starting energy, t_{max} – max electron penetration depth

Kearsly theory – modification of Burlin's theory, accounts for electron scattering; predicts dose distribution across the cavity

Other Cavity Theories

- Luo Zheng-Ming (1980) has developed a cavity theory based on application of electron transport equation in the cavity and surrounding medium. It is very detailed and provides good agreement with experiment
- The effort to develop new and more complicated cavity theories may be diminishing due to strong competition with Monte Carlo methods
- Simple theories will always be useful for approximate solution and estimates

Dose near interfaces between dissimilar media

- A *minimum* is observed just beyond the interface when the photons go from a higher-Z to a lower-Z medium
- A *maximum* is observed just beyond the interface when the photons go from a lower-Z to a higher-Z medium
- Tissue-bone interface is an example

Summary

- Bragg-Gray theory works best for small cavities, media of similar atomic numbers
- Spencer theory includes delta rays, cavity size effect
- Burlin theory for a range of cavity sizes, no electron scattering included
- Cavity theories create a basis for dosimetry