Neutron Interactions and Dosimetry

Chapter 16

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Outline

- Neutron dosimetry
 - Thermal neutrons
 - Intermediate-energy neutrons
 - Fast neutrons
- Sources of neutrons
- Mixed field dosimetry, paired dosimeters
- Rem meters

Introduction

- Consider neutron interactions with the majority tissue elements H, O, C, and N, and the resulting absorbed dose
- Because of the short ranges of the secondary charged particles that are produced in such interactions, CPE is usually well approximated
- Since no bremsstrahlung x-rays are generated, the absorbed dose can be assumed to be equal to the kerma at any point in neutron fields at least up to an energy E ~ 20 MeV

Tissue composition

Element	ICRU (1977) Muscle	ICRP Skeletal Muscle	Whole Body
н	10.2	10.06	10.5
0	72.9	75.48	67.7
C	12.3	10.78	18.7
N	3.5	2.77	3.1
Other	1.1	0.91	
Total	100.0	100.00	100.0

• The ICRU composition for muscle has been assumed in

most cases for neutron-dose calculations, lumping the 1.1% of "other" minor elements together with oxygen to make a simple four-element (H, O, C, N) composition

Neutron kinetic energy

- Neutron fields are divided into three categories based on their kinetic energy:
 - Thermal (E<0.5 eV)
 - Intermediate-energy (0.5 eV<E<10 keV)</p>
 - Fast (E>10 keV)
- Differ by their primary interactions in tissue and resulting biological effects

Neutron kinetic energy

- Thermal neutrons, by definition, have the most probable kinetic energy E=kT=0.025eV at T=20C
- Neutrons up to 0.5eV are considered "thermal" due to simplicity of experimental test after they emerge from moderator material
- · Cadmium ratio test:
 - Gold foil can be activated through $^{197}Au(n,\gamma)^{198}Au$ interaction
 - Addition of 1mm thick Cd filter, which absorbs all neutrons below 0.5eV, tests for presence of those neutrons

Neutron kinetic energy

- For E<10 keV the dose is mainly due to γ rays resulting from thermal-neutron capture in hydrogen, ¹H(n, γ)²H
- For E>10 keV the dose is dominated by the contribution of recoil protons resulting from elastic scattering of hydrogen nuclei
 - Resulting biological effect (and the corresponding neutron quality factor) rises steeply

Kerma calculations

 For a mono-energetic neutron beam having fluence Φ (cm⁻²), the kerma that results from a neutron at a point in a medium is

$$K = 1.602 \times 10^{-8} \Phi \sigma N_t m^{-1} E_{tr}$$

where σ is the interaction cross section in cm²/(target atom), N_i is the number of target atoms in the irradiated sample, *m* is the sample mass in grams, and E_{tr} is the total kinetic energy (MeV) given to charged particles per interaction

Kerma calculations

- The product of $(1.602 \times 10^{-8} \sigma N_t m^{-1} E_{tr})$ is equal to the kerma factor F_n in rad cm²/n
- Thus the equation reduces to

$$D = K = \Phi F_n$$

• CPE condition is usually well-approximated for neutron interactions in tissue

Kerma calculations

- F_n values are tabulated in Appendix F
- F_n is not generally a smooth function of Z and E, unlike the case of photon interaction coefficients
- Interpolation vs. Z cannot be employed to obtain values of F_n for elements for which data are not listed, and interpolation vs. E is feasible only within energy regions where resonance peaks are absent

Thermal-neutron interactions in tissue

- Two important interactions of thermal neutrons with tissue:
 - neutron capture by nitrogen, ${}^{14}N(n,p){}^{14}C$
 - neutron capture by hydrogen, ${}^{1}H(n,\gamma){}^{2}H$
- Thermal neutrons have a larger probability of capture by hydrogen atoms in muscle, because there are 41 times more H atoms than N atoms in tissue

Thermal-neutron interactions in tissue

- The nitrogen interaction releases a kinetic energy of $E_{\rm tr} = 0.62$ MeV that is shared by the proton (0.58 MeV) and the recoiling nucleus (0.04 MeV)
- CPE exits since the range of protons in tissue ~10µm
- Based on known values for σ and N_t/m , kerma factor

 $F_n = 2.74 \times 10^{-11} [\text{rad cm}^2 / n]$

• Dose deposited _{CPE}

```
D = 2.74 \times 10^{-11} \Phi [rad]
```

Thermal-neutron interactions in tissue

- In the hydrogen interaction the energy given to γ rays per unit mass and per unit fluence of thermal neutrons can be obtained similarly, but replacing $E_{\rm tr}$ by $E_{\gamma} = 2.2$ MeV (the γ -ray energy released in each neutron capture)
- The energy available: $R_{\gamma}/\Phi m = 7.13 \times 10^{-10}$ [rad cm²/n]
- These γ-rays must interact and transfer their energy to charged particles to produce kerma
- Contribution to dose depends on proximity to RE

Thermal-neutron interactions in tissue

- In the center of a 1-cm diameter sphere of tissue the kerma contributions from the (*n*, *p*) and (*n*, γ) processes are comparable in size
- In a large tissue mass (radius > 5 times the γ -ray MFP) where radiation equilibrium is approximated, the kerma due indirectly to the (n, γ) process is 26 times that of the nitrogen (n, p) interaction
- The human body is intermediate in size, but large enough so the 1 H(n, γ)²H process dominates in kerma (and dose) production

Interactions by intermediate and fast neutrons in tissue

- It is dominated below 10⁻⁴ MeV (100eV) by (*n*,*p*) reactions, mostly in nitrogen, represented by curve *g*
- Above 10⁻⁴ MeV elastic scattering of hydrogen nuclei (curve *b*) contributes nearly all of the kerma

Interactions by neutrons in tissue

Interaction by intermediate and fast neutrons in tissue

• The average energy transferred by elastic scattering to a nucleus is closely approximated (i.e., assuming isotropic scattering in the centerof-mass system) by

$$\overline{E}_{tr} = E \frac{2M_a M_n}{(M_a + M_n)^2}$$

where
$$E =$$
 neutron energy,
 $M_a =$ mass of target nucleus,

 M_n = neutron mass

Interaction by intermediate and fast neutrons in tissue

- Values for \overline{E}_{tr} for different tissue atoms:
 - E/2 for hydrogen recoils (changes from 0 when proton is recoiling at 90° to E_{tr} for protons recoiling straight ahead)
 - 0.142E for C atoms
 - 0.124*E* for N
 - 0.083*E* for O

Neutron sources

- Neutrons can be released through processes such as fission, spallation, or neutron stripping
- Fission: splitting atoms in a nuclear reactor

 n + 2³⁵U = n + n + fragments one n may go back into chain reaction, the other is available
- Spallation: bombarding heavy metal atoms with energetic protons
 - p + heavy nucleus = X * n + fragments
- Stripping: bombarding light metal atoms with protons, α-particles, etc.

Neutron sources

- Most widely available neutron sources:
 - Nuclear fission reactors
 - Accelerators
 - Radioactive sources

Neutron yields are on the order of 1 neutron per $10^4\,\alpha$ - particles; average energies $\cong 4~MeV$

• Tissue dose rates ~10rad/min at 1m in tissue, γ-ray background ~few %

Mixed-Field Dosimetry $n + \gamma$

- Neutrons and γ -rays are both indirectly ionizing radiations that are attenuated exponentially in passing through matter
- Each is capable of generating secondary fields of the other radiation:
 - (γ, *n*) reactions are only significant for high-energy γ-rays (≥10 MeV, there is a threshold defined by reaction)
 - (n, γ) reactions can proceed at all neutron energies and are especially important in thermal-neutron capture, as discussed for ${}^{1}\text{H}(n, \gamma){}^{2}\text{H}$

Mixed-Field Dosimetry $n + \gamma$

- Neutron fields are normally "contaminated" by secondary γ-rays
- Since neutrons generally have more biological effectiveness per unit of absorbed dose than γrays, it is desirable to account for γ and n components separately
- It is especially important in the case of neutron dosimeters to specify the reference material to which the dose reading is supposed to refer

Mixed-Field Dosimetry $n + \gamma$

- Three general categories of dosimeters for $n + \gamma$ applications:
 - 1. Neutron dosimeters that are relatively insensitive to γ rays
- 2. γ-ray dosimeters that are relatively insensitive to neutrons
- 3. Dosimeters that are comparably sensitive to both radiations

Mixed-Field Dosimetry $n + \gamma$

- While water is a very close substitute of muscle tissue in photon dosimetry, it is not as close a substitute for neutrons
- Water is 1/9 hydrogen by weight; muscle is 1/10 hydrogen
- Water contains no nitrogen, and hence can have no ${}^{14}N(n,p){}^{14}C$ reactions by thermal neutrons
- For 1MeV photon $(\mu_{en}/\rho)_{muscle}=0.99 \ (\mu_{en}/\rho)_{water}$, for 1MeV neutron $(F_n)_{muscle}=0.91(F_n)_{water}$

Mixed-Field Dosimetry $n + \gamma$

• The response of a dosimeter to a mixed field of neutrons and γ -rays $Q_{n,v} = AD_v + BD_n$

or alternatively as

$$\frac{Q_{n,\gamma}}{A} = D_{\gamma} + \frac{B}{A}D_n$$

Here A = response per unit of absorbed dose in tissue for γ -rays, B = response per unit of absorbed dose in tissue for neutrons, D_{γ} and D_n are absorbed doses in tissue correspondingly due to γ -rays and neutrons

Mixed-Field Dosimetry $n + \gamma$

- By convention the absorbed dose referred to in these terms is assumed to be that under CPE conditions in a small imaginary sphere of muscle tissue, centered at the dosimeter midpoint with the dosimeter absent
- Most commonly this tissue sphere is taken to be just large enough (0.52-g/cm² radius) to produce CPE at its center in a ⁶⁰Co beam

Mixed-Field Dosimetry $n + \gamma$

- An approach of employing two dosimeters (paired dosimeters) having different values of A/B can be used to simultaneously obtain D_x and D_n
- The best dosimeter pair is a TE-plastic ion chamber containing TE gas (for which $B/A \cong 1$) to measure the total $n + \gamma$ dose, and a nonhydrogenous dosimeter having as little neutron sensitivity as possible to measure the γ dose

- Ideally this paired dosimeter should measure *only* γ -rays

• Closer values of A/B in a pair decrease the accuracy

Mixed-Field Dosimetry $n + \gamma$

- Often dosimeters insensitive to γ-rays are used in mixed fields to evaluate neutron dose only (A<<B)
- ★ Activation of metal foils ($A \cong 0$)
 - Fission foils (A = 0)
 - Etchable plastic foils $(A \cong 0)$
 - Damage to silicon diodes $(A \cong 0)$ - Hurst proportional counter $(A \cong 0)$
- \Rightarrow Rem meters
- Long counters
- Bubble detectors

Activation of metal foils

- Since most of radio-activation by photonuclear reactions can occur only above the energy range of γradiation (>10MeV), metal foils are only activated by the neutrons in the mixed field
- The resulting activity of a foil is measured by counting γ-rays emitted (G-M counter will work)
- Some activated foils are β -emitters (e.g., in ${}^{32}S(n,p){}^{32}P$ reaction, ${}^{32}P$ is a β -emitter)

Activation of metal foils

- Thermal neutrons have a fixed activation cross section $\sigma(E)=\sigma$
- Fast neutrons have activation threshold, below which $\sigma(E)=0$
- Since different materials have different threshold, a set of foils with different thresholds allows determination of the neutron spectrum

Rem meters

- Instruments designated to measure dose equivalent
 H, evaluated at the depth in the body where it
 reaches a maximum for each incident neutron energy
- The ICRP provided the fluence-to-maximum doseequivalent conversion factor d(E) (units of mrem/(n cm²)) to the neutron energy incident on the body
- Dose equivalent $H = \int_{E=0}^{E_{max}} \Phi'(E) d(E) dE$, here $\Phi'(E)$ is the energy spectrum of incident neutrons

Rem meters

- Instruments are based on materials having high capture cross section for neutrons
- Most rem meters employ boron in form of BF₃ gas (very toxic and corrosive); newer instruments use helium gas
- Reactions:
 - ${}^{10}B + n \rightarrow {}^{7}Li + \alpha + 2790 \ keV$
 - ${}^{3}He + n \rightarrow {}^{3}H + {}^{1}H + 765 \ keV$

Summary

- Neutron dosimetry approaches differ from those of photon dosimetry
- Water is not the best tissue-mimicking phantom anymore
- Quality factor for neutrons is energy dependent
- Dosimetry involves measurement of mixed n+γ fields