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Exponential Attenuation

Chapter 3

F.A. Attix, Introduction to Radiological 

Physics and Radiation Dosimetry

Outline

• Simple exponential attenuation and plural 

modes of absorption

• Narrow-beam vs. broad-beam attenuation

• Spectral effects

• The build-up factor

• The reciprocity theorem

• Summary

Introduction

• Uncharged particles (photons and neutrons)

– lose their energy in relatively few large interactions

– have a significant probability of passing through 
matter without interactions

– no limiting range

• Charged particles 

– typically undergo many small collisions, losing 
their kinetic energy gradually 

– must always lose some or all of their energy

– range defined by kinetic energy

Simple exponential attenuation

• The concept is relevant primarily to uncharged ionizing 

radiation

• Consider a monoenergetic parallel beam of a very large 

number N0 of uncharged particles incident 

perpendicularly on a flat plate of material of thickness L

• Assume ideal case where each particle either is 

completely absorbed in a single interaction, producing 

no secondary radiation, or passes straight through the 

entire plate unchanged in energy or direction

Simple exponential attenuation

• Define (1) to be the probability that an individual 

particle interacts in a unit thickness of material traversed

• If N particles are incident upon dl, the change dN in the 

number N due to absorption is

dlNdN  −=

Simple exponential attenuation

• To find the total change in the number of particles due 

to absorption in a medium of thickness L:

• The law of exponential attenuation applies to the ideal

case of no scattering or secondary radiation in the 

medium (or scattered particles are not counted in NL)
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Simple exponential attenuation

• The equation can be replaced by the infinite series

• If the thickness L is small or absorption is low, L<<1

• For example, for L<0.05 this approximation is valid 

within ~0.1%
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Simple exponential attenuation

• The quantity  is the linear attenuation coefficient, 

typically given in units of cm-1 or m-1, and dl is 

correspondingly in cm or m

• Also in use is the mass attenuation coefficient, /r, 

where r is the density of attenuating medium; units 

are cm2/g or m2/kg

• The quantity 1/ (cm or m) is known as the mean free 

path or relaxation length of the primary particles. It is 

the average distance a single particle travels through 

an attenuating medium before interacting

Plural modes of absorption

• If more than one absorption process is present, then 
we can write that the total linear attenuation 
coefficient  is equal to the sum of its parts:

where 1 is called the partial linear attenuation 
coefficient for process 1, and likewise for the other 
processes

• Again we assume that each event by each process is 
totally absorbing, producing no scattered or 
secondary particles
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Plural modes of absorption

• The law of exponential attenuation

or

which demonstrates that the number NL of particles 
penetrating through the slab L depends on the total 
effect of all the partial attenuation coefficients

LL e
N

N )  (

0

21 ++−
=



 ))(( 21

0

LL

L eeNN
 −−

=

Plural modes of absorption

• The total number of interactions by all types of 
processes is given by

and the number of interactions by a single process x
alone is

where x/ is the fraction of the interactions that go 
by process x. Note that you need to know total 
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Example 3.1

• Let 1 = 0.02 cm-1 and 2 = 0.04 cm-1 be the 

partial linear attenuation coefficients in the 

slab. Let L = 5 cm, and N0 = 106 particles. 

How many particles NL are transmitted, and 

how many are absorbed by each process in 

the slab?
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Example 3.1

• The number of transmitted particles 

• The number of absorbed particles

• The number of absorbed by processes 1or 2
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Example 3.1

• If we do not take into account the total 

• The result for  N2 has lower error due to 2

being closer to 
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“Narrow-beam” attenuation

• Exponential attenuation will be observed for a 
monoenergetic beam of identical uncharged particles 
that are “ideal” - absorbed without producing 
scattered or secondary radiation

• Real beams of particles interact with matter by 
processes that may generate either charged or 
uncharged secondary radiations, as well as scatter

• The total number of particles that exit from the slab 
is hence greater than just the surviving primaries

• What should be counted by a detector?

“Narrow-beam” attenuation

• Secondary charged particles should not to be 

counted as uncharged particles

– charged particles are usually much less penetrating, and 

thus tend to be absorbed in the attenuator

– those that do escape can be prevented from entering the 

detector by enclosing it in a thick enough shield

• Energy given to charged particles is thus regarded 

as having been absorbed (it is not a part of the 

primary beam anymore)

“Narrow-beam” attenuation

• The scattered and secondary uncharged particles can 
either be counted in NL, or not

• If they are counted, the exponential attenuation 
equation becomes invalid in describing the variation 
of NL vs. L: case of broad-beam attenuation

• If scattered or secondary uncharged radiation 
reaches the detector, but only the primaries are 
counted in NL, the exponential attenuation equation 
is valid: case of broad-beam geometry but narrow-
beam attenuation

“Narrow-beam” attenuation

• Real attenuation coefficient  must be numerically 
larger than the value of any corresponding 
effective attenuation coefficient ´ that is observed 
under broad-beam attenuation conditions

• There are two general ways of achieving narrow-
beam attenuation:

– Discrimination against all scattered and secondary 
particles that reach the detector, on the basis of particle 
energy, penetrating ability, direction, coincidence, 
anticoincidence, time of arrival (for neutrons), etc.

– Narrow-beam geometry, which prevents any scattered 
or secondary particles from reaching the detector
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Narrow-beam geometry

• Achieving narrow-beam geometry (“good” 
geometry) is not difficult experimentally

• Used to obtain tabulated values of 

Narrow-beam geometry

• The shield is assumed to stop all radiation incident 

upon it except that passing through its aperture

• If it allows any leakage, it may be necessary to put a 

supplementary shield around the detector that 

allows entry of radiation at angles   0

– Lead is the usual shielding material for x- or -rays, 

especially where space is limited

– Iron and hydrogenous materials are preferable for fast 

neutrons

Broad-beam attenuation

• Any attenuation geometry other than narrow-beam 

geometry is called broad-beam geometry

• The concept of an ideal broad-beam geometry is 

more difficult to define, and is experimentally less 

accessible

• In ideal broad-beam geometry every scattered or 

secondary uncharged particle strikes the detector, but 

only if generated in the attenuator by a primary 

particle on its way to the detector, or by a secondary 

charged particle resulting from such a primary

Ideal broad-beam attenuation
• The attenuator must be thin enough to allow the escape of

– all the uncharged particles resulting from first interactions by 

the primaries

– all the x-rays and annihilation -rays emitted by secondary 

charged particles that are generated by primaries in the 

attenuator

• Multiple scattering is excluded from this ideal case

• If we have ideal broad-beam geometry, and the detector 

that responds in proportion to the radiant energy of all the 

primary, scattered, and secondary uncharged radiation, 

then we have a case of ideal broad-beam attenuation

Ideal broad-beam attenuation

• For this case we can write an exponential equation:

– R0 is the primary radiant energy incident on the detector

– RL is the radiant energy of uncharged particles striking the 
detector when the attenuator is in place 

– L is the attenuator thickness (must remain thin enough to 
allow escape of all scattered and secondary uncharged 
particles)

– en is the energy-absorption coefficient
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Ideal broad-beam attenuation
• en is often used as an approximation to the effective 

attenuation coefficient ´ for thin absorbing layers in 

broad-beam attenuation

• It is referred to as the “straight-ahead approximation”: 

the scattered and secondary particles are supposed to 

continue straight ahead until they strike the detector

• The approximation is often not accurate even for thin 

absorbers, but the true ´ is often not known

• It is adequate in calculating photon attenuation in the 

wall of an ionization chamber made of low-Z material
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Broad-beam attenuation

• Practical broad-beam geometries usually are not ideal 

– Some of the scattered and secondary radiation that is 
supposed to reach the detector fails to arrive - this loss of 
radiation can be called out-scattering (particles S1)

– Similarly, in-scattering is defined as the arrival at the 
detector of scattered and secondary uncharged particles that 
are generated in the attenuator by primaries that are not
aimed at the detector (particles S2)

Ideal broad-beam 

geometry may be 

simulated if in-scattered 

particles compensate for 

out-scattered

Types of geometries and attenuations

• Narrow-beam geometry: only primary strikes the detector,  is 

observed for monoenergetic beams

• Narrow-beam attenuation: Only primaries are counted in NL, 

is observed for monoenergetic beams

• Broad-beam geometry: at least some scattered and secondary 

radiation strikes the detector

• Broad-beam attenuation: scattered and secondary radiation is 

counted in NL, `<  is observed

• Ideal broad-beam geometry: every scattered or secondary 

uncharged particle generated by primary strikes the detector

• Ideal broad-beam attenuation: ideal broad beam geometry and

the detector response ~ to the radiant energy striking; `= en

Broad-beam geometries

• Practically all scattered rays (S1) originating in the attenuator will 
strike the detector, regardless of their direction (except  180)

• A deep well-type detector could roughly approximate this geometry

• This setup approaches ideal broad-beam geometry

The narrow radiation 

beam enters through a 

small hole and impinges 

on the attenuating layers 

of material inside of a 

(hypothetical) spherical-

shell detector

Broad-beam geometries

• In this case the out-scattered rays such as S1 generated in the 
attenuator upstream of the detector, but not striking it, tend to be 
compensated by in-scattered rays such as S2 originating 
elsewhere in the attenuator

• This simulates ideal broad-beam geometry at least as closely as 
any arrangement that relies on such compensation

The attenuating material 
is arranged in spherical 
shells surrounding the 
detector; the beam is 
made large enough to 
irradiate the attenuators 
fully

Broad-beam geometries

• The detector is kept as close as possible to the attenuator to allow 

laterally out-scattered rays such as S1 to be maximally replaced by 

in-scattered rays such as S2

• In practice the detector is kept stationary, and the attenuating slabs 

are added in sequence of increasing thickness (u → z)

A plane beam that is 

infinitely wide compared to 

the effective maximum range 

of scattered and secondary 

radiation, and incident 

perpendicularly on similarly 

wide attenuating plates

Broad-beam geometries

• For a diverging beam the observed attenuation would 

be exaggerated by a loss of intensity in proportion to 

the inverse square of the distance from the source

• The detector receives no back-scattered radiation, since 

there is no material behind it

• The irradiated attenuator subtends a solid angle at the 
detector of only about 2 radians, as compared to 4
radians for “b”

• The smaller the subtended solid angle, the poorer the 
“coupling” between the detector and the attenuator, and 
the less scattered radiation will reach the detector
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Broad-beam geometries

• Uncharged particle (usually photon) beams of various cross-

sectional dimensions are directed perpendicularly on the phantom, 

and the detector response is measured vs. depth

• The resulting function, the “central-axis depth-dose” of the beam, 

for a specified SSD is used in radiotherapy treatment planning

• If the beam and tank were very wide, the attenuation function 

observed would be similar to that in geometry “c”

A detector that may be positioned 

at a variable depth x from the front 

surface of a large mass of solid or 

liquid medium, designed to 

simulate the attenuating properties 

of the human body (a phantom)

Broad-beam geometries

• The effective attenuation coefficient  observed at a given depth 
will be closer to 

• This trend is even more accentuated by moving the detector a 
distance d away from the attenuators

• The larger the ratio d/w (for beam width w large enough to cover 
the detector), the closer the setup is to narrow-beam geometry

If a smaller beam size is used in 

geometries “c” and “d”, out-scattered 

rays S1 are less fully compensated by 

in-scattered rays (S2), and the response 

of the detector to scattered radiation 

decreases relative to its response to 

primary radiation

Broad-beam geometries

• The effect of attenuation can be separated from that of the 

inverse square law by comparing the detector response in the 

medium with that in vacuum for the same distance

• Note that out-scattered rays like S1 are compensated by in-

scattered rays like S2, but additional backscattered rays such as 

S3 may also strike the detector, especially when it is close to the 

source and the primary (source) energy is low

A point source and a detector 

are immersed in an infinite 

homogeneous medium (e.g., 

water) and separated by a 

variable distance

Broad-beam attenuation examples

Broad-beam attenuation of (a) 60Co (1.25 MeV) and (b) 203Hg 

(0.279 MeV) gamma rays as a function of distance from a point 

source in an infinite water medium (geometry “f”)

 – narrow-beam attenuation

en – ideal broad-beam attenuation

` – broad-beam attenuation

positive slope

Spectral effects

• Energy dependence of detector response will affect observed 

attenuation in broad-beam geometries due to difference in 

sensitivity to primary vs. scatter

• For narrow-beam attenuation the spectral effect will be observed 

for poly-energetic beams

• In general, for the differential energy-fluence spectrum L(E) (in 

J/m2 keV) reaching the detector through attenuator thickness L, 

and the narrow-beam attenuation coefficient E,Z - need to define 

a mean value:
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Spectral effects

• Scattered 

particles have 

lower energy and 

affect attenuation 

curves the most at 

shallower depth

• Even for narrow-

beam attenuation 

the slope changes 

if the beam is 

poly-energetic 

(spectrum)

beam 

broadening

narrow 

beam
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Spectral effects: detector 

response example
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• Measuring transmission to 

restore the beam spectrum: 

weak dependence of µ on 

energy

• Variation in low energy 

range stronger for lead 

• Better variation in higher 

energy range for 

polycarbonate material

Unfolding a spectrum from 

transmission measurements 

• Total signal at depth (thickness) n

= signal from a source of energy in bin i, Ei

• Find response function fi from a 

system of NxM linear equations

• Ill-conditioned problem: small 

change in signal in energy bin i

leads to large change in the total 

signal
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Spectral effects: detector 

response example
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 Solution1

 Solution2

 Solution3

• Transmission 

measurements result in 

a set of equations 

representing an ill-

conditioned problem 

• Example of using 

direct matrix inversion

Spectral effects: detector 

response example
• Positives • Negatives

• Experimental set up is easy

• Allows restoring spectra of 

YOUR machine

• Can be implemented in a 

standard clinic

• dependence on E at 

therapy energies very weak

• Therefore ill-conditioned 

problem requiring involved 

data analysis 



Spectral effects: detector 

response example
• Response of ion chamber 

varies with build up caps 

• Adds sensitivity to 

transmission measurements

• More than just an 

attenuation coefficient of 

one material

• Use of MC to model the 

response function

Spectral effects: detector 

response example
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• Significant response 

difference of the ion 

chamber as beam is 

attenuated via low-Z 

material

• Helps extract 

spectral information 

if the detector 

response is known
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Spectral effects: detector 

response example
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• Observed the 

response of the ion 

chamber did not 

vary much as beam 

was attenuated via 

high-Z material

The buildup factor

• The concept of buildup factor B is useful in quantitative 
description of broad-beam attenuation

• It can be applied with respect to any specified geometry, 
attenuator, or physical quantity (number of particles, dose, etc.) 

• The general definition can be written as

• B=1 for narrow-beam geometry

• B>1 and is depth-dependent for broad-beam geometry

aloneradiation primary   toduequantity 

radiationseconday  and scattered       

primary  toduequantity 

+
=B

The buildup factor
• For energy fluence arriving at the detector behind a medium 

thickness L, and the narrow-beam attenuation coefficient 

• When L=0 (i.e., no attenuator between source and detector), B
becomes equal to B0  L/0=1 for most broad-beam 
geometries

• For geometry “d”, when the detector is at the phantom surface 
(depth L = 0), backscattered rays will still strike it

• Hence L > 0 and so B0 > 1 even for L = 0

• In that case B0 is called the backscatter factor

LL Be −=




0

The buildup factor

• Build-up factors for other quantities show similar behavior 

of increase with depth

• Rate of increase depends on material (Z) and photon energy

water lead

The buildup factor

• An alternative concept to the buildup factor is the 

mean effective attenuation coefficient, which can 

be defined through energy fluence ratio as:

or, solving for,

LLL eBe  −− =




0

L
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The buildup factor

• Comparison of exposure buildup factor B and mean 

effective attenuation coefficient for a plane beam of 1-MeV 

-rays in water

• Mean effective attenuation coefficient ` is not as strongly 

dependent on depth L as B

 <<
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The reciprocity theorem

The simplest formulation of 

the reciprocity theorem for 

the attenuation of any kind 

of radiation:  

Reversing the positions of a 

point detector and a point 

source within an infinite 

homogeneous medium does 

not change the amount of 

radiation detected

The reciprocity theorem

• If P and Q are different with respect to their 
scattering and/or attenuating properties, the 
transmission of primary rays still remains the 
same, left or right

• However, the generation and/or transmission of a 
scattered ray may differ

– If the scattered ray is absorbed more strongly in 
medium Q than in P, all else being equal, it is more 
likely to reach the detector in case b than in case a, 
since its path length in medium Q is longer in case a

The reciprocity theorem

• The theorem is not exact in dissimilar media, 
except for primary rays 

• It is still useful in calculating the attenuation 
of radiation in dissimilar or nonhomogeneous 
media, if 

– either the primary rays dominate

– or the generation and propagation of scattered 
rays is not strongly dissimilar in the different 
media

The reciprocity theorem

• Mayneord extended the reciprocity theorem to the case where 
the source and detector were both extended volumes:
– The integral dose in a volume V due to a -ray source uniformly 

distributed throughout source volume S is equal to the integral dose that 
would occur in S if the same activity density per unit mass were 
distributed throughout V

• This can be exact with respect to the dose resulting from 
primary rays only, unless V and S are parts of an infinite 
homogeneous medium

• The theorem as stated is only true

if the mass energy-absorption

coefficients are the same for 

the materials in S and V

The reciprocity theorem
• As a corollary to this theorem, one can state that:

– If S and V contain identical, uniformly distributed total activities, they will 
each deliver to the other the same average absorbed dose

• Furthermore:

– If all the activity in S is concentrated at an internal point P, then the dose 
at P due to the distributed source in V equals the average dose in V
resulting from an equal source at P

• This latter statement can be taken a step further to say:

– The dose at any internal point P in S due to a uniformly distributed source 
throughout S itself is equal to the average absorbed dose in S resulting 
from the same total source concentrated at P

• This relationship, though exact only in an infinite homogeneous medium, or 
for primary radiation, is nevertheless practically useful in calculation of 
internal dose due to distributed sources in the body (MIRD tables)

Summary

• Simple exponential attenuation equation is valid only for 

mono-energetic beams in narrow-beam geometry

• Broad-beam geometry is more achievable in realistic 

experiments

• Broad-beam attenuation equation can be effectively used, 

taking into account energy-dependent detector response

• The build-up factor and mean effective attenuation 

coefficient are used for quantitative description of broad-

beam attenuation

• The reciprocity theorem is practically useful in calculation 

of internal dose due to distributed sources in the body
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