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Absorbed Dose in Radioactive 

Media

Chapter 5

F.A. Attix, Introduction to Radiological 

Physics and Radiation Dosimetry

Outline

• General dose calculation considerations, 
absorbed fraction

• Radioactive disintegration processes and 
associated dose deposition

– Alpha disintegration

– Beta disintegration

– Electron-capture transitions

– Internal conversion

• Summary

Introduction

• We are interested in calculating the absorbed dose in 

radioactive media, applicable to cases of

– Dose within a radioactive organ

– Dose in one organ due to radioactive source in another 

organ

• If conditions of CPE or RE are satisfied, dose 

calculation is straightforward

• Intermediate situation is more difficult but can be 

handled at least in approximations 

Radiation equilibrium

a. The atomic composition 

of the medium is 

homogeneous

b. The density of the 

medium is 

homogeneous

c. The radioactive source 

is uniformly distributed

d. No external electric or 

magnetic fields are 

present

Charged-particle equilibrium

• Each charged particle of a given type and 

energy leaving the volume is replaced by an 

identical particle of the same energy entering 

the volume

• Existence of RE is sufficient condition for CPE

• Even if RE does not exist CPE may still exist 

(for a very large or a very small volume)

Limiting cases

• Consider two 

limited cases based 

on the size of the 

radioactive object

• Emitted radiation typically includes both 

photons (longer range) and charged 

particles (shorter range)

• Assume the conditions for RE are satisfied
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Limiting cases: small object

• A radioactive object V having a mean radius not much 
greater than the maximum charged-particle range d

• CPE is well approximated at any internal point P that is 
at least a distance d from the boundary of V

• If d« l/m for the g-rays, the absorbed dose D at P 
approximately equals to the energy per unit mass of 
medium that is given to the charged particles in 
radioactive decay (less their radiative losses)

• The photons escape from the object and are assumed not 
to be scattered back by its surroundings

Limiting cases: large object

• A radioactive object V with mean radius » l/m for 

the most penetrating g-rays 

• RE is well approximated at any internal point P 

that is far enough from the boundary of V so g-ray 

penetration through that distance is negligible

• The dose at P will then equal the sum of the 

energy per unit mass of medium that is given to 

charged particles plus g-rays in radioactive decay 

Limiting cases: large object

• Deciding upon a maximum 

g-ray “range” L for this case 

requires quantitative 

criterion

– For primary beam only (m) the 

penetration is < 0.1% through 

L~7 mean free paths

– Taking into account scatter, 

(broad beam geometry,     ) 

will increase the required 

object size to satisfy the 

attenuation objectives

m 

Attenuation of 1MeV g-rays in water

Absorbed fraction

• An intermediate-size radioactive object V

• Dose at P will then equal the sum of the energy 

per unit mass of medium that is given to 

charged particles plus dose from some g-rays 

• To estimate the dose from g-rays define 

absorbed fraction:

sourceby  emittedenergy radiant ray -

volumein target  absorbedenergy radiant ray -

g

g
AF

Intermediate-size radioactive object

• Consider volume V filled by a 
homogeneous medium and a 
uniformly distributed g-source

• The volume may be 
surrounded by

Case 1: infinite homogeneous 
medium identical to V, but non-
radioactive (an organ in the 
body)

Case 2: infinite vacuum (object in 
air)

Case 1

• Reciprocity theorem: energy spent 

in dv due to the source in dv’:

• No source in dv”

• Define Rdv as the expectation 

value of the g-ray radiant energy 

emitted by the source in dv, and 

dv,V the part of that energy that is 

spent in V (source dv and target V)

dvVVdvvddvdvvd ,,,,
 and   
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Case 1 continued

• The absorbed fraction with respect 
to source dv and target V is :

• Estimates reduction in absorbed 
dose relative to RE condition

• For very small radioactive objects 
(V  dv) this absorbed fraction 
approaches zero; for an infinite 
radioactive medium it equals unity

dv

dvV

dv

Vdv

Vdv
RR

AF
,,

,




source, target

Case 1 continued

• Reduction in the absorbed dose due to g-rays 
energy escaping from V

• Can estimate AF using mean effective attenuation 
coefficient       for g-rays energy fluence through a 
distance r in the medium

• For poly-energetic sources have to find an average 
value of the absorbed fraction

  










m
ddeAF

r

Vdv
sin1

4

1

0

2

0

,  
 




m 

Case 1 example

• Dose calculations published in MIRD (Medical Internal 
Radiation Dosimetry) reports

• The larger the radius, the lower the g-ray energy – the closer to 
RE condition (AF=1) 

radius of 

sphere

Case 2

• More difficult to calculate

• The reciprocity theorem is 
only approximate due to 
the lack of backscattering

• Energy dependence (max 
~80keV)

• Dose is lower than in 
Case 1 (ratios >1)

Radioactive object V surrounded by vacuum

Case 2

• To obtain a crude estimate of the dose at some 
point P within a uniformly g-active homogeneous 
object, it may suffice to obtain the average 
distance r from the point to the surface of the 
object by

• Then one may employ men = m in the straight-
ahead approximation to obtain

r

Vdv
eneAF

m
 1

,

  











 0

2

0

  sin     
4

1
ddrr

MIRD tables

• AF is incorporated in “S-value” 
tabulated for each radionuclide 
and source-target configuration 
used in nuclear medicine

• Dose absorbed in any organ 
(target) due to a source in some 
other organ is calculated based 
on cumulative activity, D=AxS

• S values are typically calculated 
by Monte Carlo technique

• Straightforward approach, but 
accuracy is limited

Pamphlet 

5rev, 1978

Pamphlet 11, 1975
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MIRD tables

• The accuracy is continuously improved through revisions and updates

• Example: kidneys represent a frequent source of radiopharmaceutical uptake 
in both diagnostic and therapeutic nuclear medicine

Bouchet et al., MIRD Pamphlet No. 19, The Journal of Nuc. Med., Vol. 44, p. 1113, 2003

MIRD tables

Bouchet et al., MIRD Pamphlet No. 19, THE JOURNAL OF NUC. MED., Vol. 44, p. 1113, 2003

Radioactive disintegration 

processes
• Radioactive nuclei undergo transformations to a more 

stable state through expulsion of energetic particles

• The total mass, energy, momentum, and electric 

charge are conserved

• Energy equivalent of the rest mass:

– 1 amu=1/12 of the mass of 12
6C nucleus=931.50 MeV

– 1 electron mass=0.51100 MeV

Alpha disintegration

• Occurs mainly in heavy nuclei

• Example: decay of radium to radon, presented by 
the mass-energy balance equation

• Each of the elemental terms represents the rest 
mass of a neutral atom of that element

• Energy term represents kinetic energy released

MeV 78.4  He Rn  Ra
4

2

222

86
y 1602

226

88

2/1


parent daughter

Alpha disintegration

• Two branches are available for disintegration

• Kinetic + quantum energy released is 4.78MeV

• After the -particle slows down it captures two electrons from 
its surroundings, becoming a neutral He atom

Absorbed dose from 

- disintegration
• Take into account both branches through the average 

branching ratios

• For radium average kinetic energy given to charged 
particles per disintegration

• For CPE condition in a small (1 cm) radium-activated 
object: D=4.77 x n MeV/g, where n – number of 
disintegrations per gram of the matter

• For RE condition (large object): D=4.78 x n MeV/g, 
includes g-ray energy

MeV 4.77MeV 4.60.054  MeV78.4946.0 


E
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Beta disintegration

• Nuclei having excess of neutrons typically emit an 

electron, - particle; atomic number Z is increased by 1

• Nuclei having excess of protons typically emit positron, 

+ particle; atomic number Z is decreased by 1

• Nucleus is left in an exited state, emitting one or more 

g-rays

• Example: 

MeV 71.1      S P
0

0

-32

16
d 3.14

32

15
2/1





 kinetic energy

Beta disintegration

• Kinetic energy 1.71 MeV is shared between - and neutrino

• Charge balance is realized through initially ion of 32
16S

+

capturing an electron

Beta disintegration

• Average kinetic energy of the - or + particle is typically 

0.3-0.4 Emax; 1/3 Emax is often used for purposes of roughly 

estimating absorbed dose

• Neutrino is not included in dose estimates due to almost zero 

rest mass energy and no charge

Beta disintegration

• In + disintegration valence electron is emitted simultaneously 

• Example: 15
8O -> 15

7N

MeV 73.1   e  N  O
0

0

 -15

7
s 122

15

8
2/1









positron annihilation yields 2m0c
2=1.022 MeV

Absorbed dose from 

- disintegration

• Under CPE condition D=nEavg MeV/g for n 
disintegrations per gram of medium

• Any additional contributions to energy 
deposition due to g-rays must be included 
for RE condition

• Radiative losses by -rays, such as 
bremsstrahlung and in-flight annihilation, 
are ignored

Example 5.1

• Uniformly distributed - and g-ray source

• The rest-mass loss is spent

– half in 1 -MeV g -ray production and

– half in  - -decay, for which Emax=5 MeV and Eavg=2 MeV

• The point of interest P is located >5 cm inside the
boundary of the object, at an average distance r = 20
cm from the boundary.

• men=0.0306 cm-1 and m = 0.0699 cm -1 for the g -rays

• A total energy of 10-2 J converted from rest mass in
each kg of the object

• Estimate the absorbed dose at P

_
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Example 5.1
• For -ray Emax=5 MeV corresponds to maximum particle 

range (Appendix E) d ~2.6 cm << 1/m=14.3 cm

• CPE exists at P, therefore dose due to -rays: 

P
L>5cm

cm20r

d

1/m

J/kg10J/kg10
2

1 22

avg


 ED



• For g-ray 20cm is not >> 1/m=14.3 cm

• RE does not exists at P, therefore have 

to use absorbed fraction: 

J/kg101.23J/kg10)102.3(D

J/kg103.2J/kg10)2/1(46.0

46.01

23

tot

32













g

m

D

eAF
r

en

Example 5.2

• What is the absorbed dose rate (Gy/h) at the 

center of a sphere of water 1 cm in radius, 

homogeneously radioactivated by 32
15P, 

with 6 x 105 disintegrations per second 

occurring per gram of water? (Assume time 

constancy)

MeV 71.1      S P
0

0

-32

16
d 3.14

32

15
2/1







Example 5.2

• Emax=1.71 MeV corresponds to maximum 

particle (-) range of ~0.8 cm < 1 cm

• CPE condition 

• Absorbed dose rate:

Gy/h 4.2   

MeV/g

Gy
10602.1

hr

s
3600

sec

MeV
10164.4    

dis

MeV
694.0

sec

dis
106

105

5









g

g
D

avg
END  

Electron-capture transitions

• Parent nucleus captures its own atomic 
electron from K-shell (~90% probability) or 
L-shell (~10% probability) and emits 
monoenergetic neutrino

• Resulting shell vacancy is filled with 
electron from a higher orbit, leading to 
emission of a fluorescence x-ray

• Process competing with + disintegrations

Electron-capture transitions

• Example: 22
11Na -> 22

10Ne with half-life for both 

branches of 2.60 years

– + branch

– EC branch

(k.e.) MeV .5460   e  Ne  Na
0

0

 -22

10
y60.2

22

11
2/1









)(E MeV .2751 E    Ne  Na
b

0

0

22

10
y60.2

22

11
2/1

g





2m0=1.022 MeV

1.568 MeV

Electron-capture transitions

• Binding energy for K-shell Eb~ 1 keV

• For + to occur the minimum atomic mass decrease of 2m0

between the parent and daughter nuclei is required to supply 

+ with kinetic energy; EC does not have this requirement
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Absorbed dose for EC process

• Most of the energy is carried away by 

neutrino

• The only available energy for dose 

deposition comes from electron binding 

term Eb, which is very small compare to that 

of neutrino

Internal conversion

• An excited nucleus can impart its energy 
directly to its own atomic electron, which 
then escapes with the net kinetic energy of 
hv-Eb (hv is the excitation energy)

• No photon is emitted in this case

• Process competing with g-ray emission

• Internal conversion coefficient is the ratio 
of Ne/Ng

Internal conversion

• Example:  137
55Cs -> 137

56Ba

Absorbed dose for internal 

conversion

• If IC occurs in competition with g-ray emission, it 

results in increase in absorbed dose in small objects 

(CPE condition) due to release of electron locally 

depositing the energy

• In addition electron binding energy is contributed 

to the dose unless it escapes as a fluorescence x-ray

bIC
EhvE 

Absorbed dose for internal 

conversion

• If the fraction p = 1 – AF of these fluorescence x-

rays escape, then the energy contributed to dose per 

IC event under CPE condition

• Using straight-ahead approximation

• Values of fluorescence yield YK,L and the mean 

emitted x-ray energies hvK,L are tabulated

LLLKKKIC
vhYpvhYphvf 

r
enep

m


Fluorescence data

Fluorescence yield for K 

and L shells

Electron binding energies and 

mean fluorescence x-ray 

energies, K and L shells
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Example 5.5

• A sphere of water 10 cm in diameter contains a 

uniform source of 137Cs undergoing 103 dis/(g s). 

What is the absorbed dose at the center, in grays, for 

a 10-day period, due only to the decay of 137m
56Ba? 

Use the mean-radius straight-ahead approximation.

For g-ray of 0.662 MeV 

in water men=0.0327 cm-1

Example 5.5

• First check RE condition: 1/m=30.6 cm >> r=5

• Find absorbed fraction

• Dose in 10 days=8.64x105 s is 

151.01
50327.0



eAF

Gy

AFs
gMeV

Gy

ray

MeV

dis

rays

sg

dis
D

2

510

3

1017.1     

1064.8
/

10602.1        

662.085.0
 

10














g

g
g

Example 5.5

• For the K-shell conversion process we need 

YK=0.90,       = 0.032 MeV, and men=0.13 cm-1 for 

0.032 MeV. Then                                        and the 

dose contribution is

Gy

Gy

s
gMeV

Gy

KIC

MeV
vhYphv

dis

KIC

sg

dis
D

KKK

K

IC

3-

2

510

3

106.99      

10)032.090.052.0662.0(080.1      

1064.8
/

10602.1        

)(
)(

)(
078.0
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











52.0
513.0



eep

r

K

en
m

K
vh

Example 5.5

• Similarly, for the L+M+…-shell conversion process 

we need YK=0.90,               = 6 keV, and men=24 cm-1

for 6 keV. Then                       and the corresponding 

dose contribution

• The total absorbed dose is

Gy

s
gMeV

Gy

LIC

MeV
vhYphv

dis

LIC

sg

dis
D

LLL

L

IC

3-

510

3

1065.1      

1064.8
/

10602.1        

)(
)(

)(
078.0
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







0
524



ep

L

L

bL
Evh 

GyDDDD
L

IC

K

ICtot

2
1003.2




g

Summary

• General approach to dose calculation within 

and outside of distributed radioactive source

– Absorbed fraction

• Radioactive disintegration processes and 

calculation of absorbed dose

– Alpha disintegration

– Beta disintegration

– Electron-capture transitions

– Internal conversion
Less important for 

dose deposition

Radioactive decay

Chapter 6

F.A. Attix, Introduction to Radiological 

Physics and Radiation Dosimetry
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Outline

• Decay constants

• Mean life and half life

• Parent-daughter relationships; removal of 

daughter products

• Radioactivation by nuclear interactions

• Exposure-rate constant

• Summary

Introduction

• Particles inside a nucleus are in constant motion

• Natural radioactivity: a particle can escape from a 
nucleus if it acquires enough energy

• Most lighter atoms with Z≤82 (lead) have at least 
one stable isotope

• All atoms with Z > 82 are radioactive and 
disintegrate until a stable isotope is formed

• Artificial radioactivity: nucleus can be made unstable 
upon bombardment with neutrons, high energy 
protons, etc.

Total decay constants

• Consider a large number N of identical 
radioactive atoms

• The rate of change in N at any time 

• We define  as the total radioactive decay
(or transformation) constant, it has the 
dimensions reciprocal time (usually s-1)

N
dt

dN


Total decay constants

• The product of t (for a time interval 

t<<1/) is the probability that an individual 

atom will decay during that time interval

• The expectation value of the total number of 

atoms in the group that disintegrate per unit 

of time (t<<1/) is called the activity of the 

group, N

Total decay constants

• Integrating the rate of change in number of 

atoms we find

• The ratio of activities at time t to that at t0 = 0

t
e

N

N 


0

t
e

N

N 



 


0

Partial decay constants

• If a nucleus has more than one possible mode 

of disintegration (i.e., to different daughter 

products), the total decay constant can be 

written as the sum of the partial decay 

constants i:

• The total activity is


BA




BA

NNN 
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Partial decay constants

• The partial activity of the group of N nuclei with 
respect to the ith mode of disintegration can be 
written

• Each partial activity iN decays at the rate 
determined by the total decay constant  since the 
stock of nuclei (N) available at time t for each type 
of disintegration is the same for all types, and its 
depletion is the result of their combined activity

• The fractions iN/N are constant

t

ii
eNN







0

Units of activity

• The old unit of activity was the Curie (Ci), originally 

defined as the number of disintegrations per second 

occurring in a mass of 1 g of 226Ra

• When the activity of 226Ra was measured more 

accurately the Curie was set equal to 3.7  1010 s-1

• More recently it was decided by an international 

standards body to establish a new special unit for 

activity, the becquerel (Bq), equal to 1 s-1

Bq 107.3Ci 1
10



Mean life and half life

• The expectation value of the time needed for an initial 

population of N0 radioactive nuclei to decay to 1/e of their 

original number is called the mean life =1/

•  represents the average lifetime of an individual nucleus

•  is also the time that would be needed for all the nuclei to 
disintegrate if the initial activity of the group, N0, were 
maintained constant instead of decreasing exponentially













1ln

3679.0
1

1

0

e

e
eN

N

Mean life and half life

• The half-life 1/2 is the expectation value of 

the time required for one-half of the initial 

number of nuclei to disintegrate, and hence 

for the activity to decrease by half:








 

6391.0
6391.0

5.0

2/1

0

2/1






e
N

N

Mean life and half life

• Exponential decay characterized in terms of mean 

life and half life

Radioactive parent-daughter 

relationships

• Consider an initially pure large population (N1)0 of 
parent nuclei, which start disintegrating with a 
decay constant 1 at time t = 0

• The number of parent nuclei remaining at time t is 
N1 = (N1)0e

-1t

• Simultaneously the daughter will disintegrate with a 
decay constant of 2 (2nd generation doing the 
decaying )

• The rate of removal of the N2 daughter nuclei which 
exist at time t0 will -2N2
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Radioactive parent-daughter 

relationships

• Thus the net rate of accumulation of the daughter 

nuclei at time t is

• The activity of the daughter product at any time t, 

assuming N2 = 0 at t = 0, is

 
22011

2211

2

1 NeN

NN
dt

dN

t











   tt
eeNN 21

12

2

01122














Radioactive parent-daughter 

relationships

• The ratio of daughter to parent activities vs. time:

• If 1 is composed of partial decay constants 1A, 
1B, and so on, resulting from disintegrations of A, 
B, … types, then the ratio for a particular type A is

  t
e

N

N
121

12

2

11

22 







 





  tA
e

N

N
121

12

2

1

1

11

22 











 





Equilibria in parent-daughter 

activities

• The activity of a daughter resulting from an initially 

pure population of parent nuclei will be zero both at      

t = 0 and 

• We can find the time tm when 2N2 reaches a maximum

giving     

 
 mm

tt
ee

dt

Nd
21

21

22
0




 


 

12

12
/ln








m
t

Equilibria in parent-daughter 

activities

• This maximum occurs at the same time that the 

activities of the parent and daughter are equal, but 

only if the parent has only one daughter (1A = 1)

• The specific relationship of the daughter’s activity 

to that of the parent depends upon the relative 

magnitudes of the total decay constants of parent 

(1) and daughter (2)

Daughter longer-lived than 

parent, 2 < 1

• For a single daughter product the ratio of activities

• This ratio increases continuously with t for all times

• Since 1N1 = 1 (N1)0e
-1t one can construct the activity 

curves vs. time for the representative case of metastable 

tellurium-131 decaying to its only daughter iodine-131; and 

then to xenon-131:

  121

21

2

11

22





 t
e

N

N 









Xe  I  Te
131

54
h193

131

53
h30

131

52

-

1/2

-

1/2







 


m

Daughter longer-lived than 

parent, 2 < 1

Qualitative relationship of activity vs. time for Te-131m as parent 

and I-131 as daughter
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Daughter shorter-lived than 

parent, 2 > 1

• For t >> tm the value of the daughter/parent 

activity ratio becomes a constant, assuming N2 = 0 

at t = 0:

• The existence of such a constant ratio of activities 

is called transient equilibrium, in which the 

daughter activity decreases at the same rate as that 

of the parent

12

2

11

22












N

N

Daughter shorter-lived than 

parent, 2 > 1

• If the decay scheme is branching to more than one 

daughter (1=1A+1B+…)

• For the special case of transient equilibrium where         

the activity of the Ath daughter is equal to its 

parent’s – secular equilibrium condition

12

2

1

1

11

22
















A

N

N

12

2

1

1












A

Daughter shorter-lived than 

parent, 2 > 1

• To estimate how close is the daughter to 

approaching a transient equilibrium with its parent 

we evaluate the ratio of activities at a time t = ntm

to that of the equilibrium time te:

 
12

/ln

11

22

11

22

1










n

t

nt

e

N

N

N

N

e

m 






























n largefor  1

Daughter shorter-lived than 

parent, 2 > 1

• Example of 

transient 

equilibrium: 99Mo 

to 99mTc

• Two branches: 86% 

decays to 99mTc, 

14% to other 

excited states of 
99Tc

Only daughter much shorter-

lived than parent, 2 >> 1

• For long times (t >> 2) the ratio of activities

the activity of the daughter very closely 
approximates that of the parent

• Such a special case of transient equilibrium, where 
the daughter and parent activities are practically 
equal, is called secular equilibrium (typically, with 
a long-lived parent “lasting through the ages”)

1

12

2

11

22













N

N

Only daughter much shorter-

lived than parent, 2 >> 1

• An example of this is the relationship of 226Ra 

parent, decaying to 222Rn daughter, then to 218Po:

• The ratio of activities

Po Rn   Ra
218

84

d 18125.0

d 824.3

222

86

,

d 101845.1

y 1602

226

88

1-

2

1/2
1-6

1

2/1







g

















1000007.1
101845.118125.0

18125.0

6

11

22






N

N







13

Only daughter much shorter-

lived than parent, 2 >> 1

• It can be shown that in a case 2 >> 1  all the progeny 

atoms will eventually be nearly in secular equilibrium with 

a relatively long-lived ancestor

Removal of daughter products

• For diagnostic or therapeutic applications of short-lived 
radioisotopes, it is useful to remove the daughter 
product from its relatively long-lived parent, which 
continues producing more daughter atoms for later 
removal and use

• The greatest yield per milking will be obtained at time 
tm since the previous milking, assuming complete 
removal of the daughter product each time

• Waiting much longer than tm results in loss of activity 
due to disintegrations of both parent and daughter

Removal of daughter products

• Assuming that the initial daughter activity is zero at 

time t = 0, the daughter’s activity at any later time t is 

obtained from

• This equation tells us how much of daughter activity 

exists at time t as a result of the parent-source 

disintegrations, regardless of whether or how often 

the daughter has been separated from its source

  t
eNN 121

12

2

1122














Radioactivation by nuclear 

interactions

• Stable nuclei may be transformed into radioactive 

species by bombardment with suitable particles, or 

photons of sufficiently high energy

• Thermal neutrons are particularly effective for this 

purpose, as they are electrically neutral, hence not 

repelled from the nucleus by Coulomb forces, and 

are readily captured by many kinds of nuclei

• Tables of isotopes list typical reactions which give 

rise to specific radionuclides

Radioactivation by nuclear 

interactions

• Let Nt be the number of target atoms present in the 

sample to be activated:

where NA = Avogadro’s constant (atoms/mole)

A = gram-atomic weight (g/mole), and

m = mass (g) of target atoms only in the

sample

A

mN
N

A

t


Radioactivation by nuclear 

interactions
• If  is the particle flux density (s-1cm-2) at the sample, and  is 

the interaction cross section (cm2/atom) for the activation 

process, then the initial rate of production (s-1) of activated 

atoms is

• The initial rate of production of activity of the radioactive 

source being created (Bq s-1) is given by

here  is the total radioactive decay constant of the new species

   

0

act

t
N

dt

dN










 
    

0

act



t

N
dt

Nd









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Radioactivation by nuclear 

interactions
• If we may assume that  is constant and that Nt is 

not appreciably depleted as a result of the activation 
process, then the rates of production given by these 
equations are also constant

• As the population of active atoms increases, they 
decay at the rate Nact (s-1)

• Thus the net accumulation rate can be expressed as

act

act
   NN

dt

dN

t
 

Radioactivation by nuclear 

interactions
• After an irradiation time t >> =1/, the rate of decay equals 

the rate of production, reaching the equilibrium activity level

• Assuming Nact = 0 at t = 0, the activity in Bq at any time t

after the start of irradiation, can be expressed as

• If no decay occurs during the irradiation period t (which will be 

approximately correct if t << )

     
act


te

NN 

     t

t

t

e
eNeNN





 1  1

actact

tNN
t

    
act

 

Radioactivation by nuclear 

interactions

Growth of a radionuclide of decay constant  due to a constant 

rate of nuclear interaction

if no decay

Exposure-rate constant

• The exposure-rate constant  of a radioactive 
nuclide emitting photons is the quotient of l2(dX/dt)
by A, where (dX/dt) is the exposure rate due to 
photons of energy greater than , at a distance l from 
a point source of this nuclide having an activity A:

• Units are R m2 Ci-1 h-1 or R cm2 mCi-1 h-1

• It includes contributions of characteristic x-rays and 

internal bremsstrahlung



 









dt

dX

A

l
2

Exposure-rate constant

• The exposure-rate constant  was defined by the ICRU to replace the 

earlier specific gamma-ray constant , which only accounts for the exposure 

rate due to g-rays

•  is greater than  by 2% or less, with except for Ra-226 (12%) and I-125 

(in which case  is only about 3% of  because K-fluorescence x-rays 

following electron capture constitute most of the photons emitted)

Exposure-rate constant

• We would like to calculate specific g-ray constant  at a 

given point source; the exposure-rate constant  may be 

calculated in the same way by taking account of the 

additional x-ray photons (if any) emitted per disintegration

• At a location l meters (in vacuo) from a g-ray point source 

having an activity A Ci, the flux density of photons of the 

single energy Ei is given by

where ki is the number of photons of energy Ei emitted per 

disintegration

  10944.2
 4

1
 107.3

2

9

2

10

l

Ak

l
Ak

i

iE
i





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Exposure-rate constant

• Flux density can be converted to energy flux density, 

expressed in units of J/s m2 (expressing Ei in MeV):

• And related to the exposure rate by recalling

)m (J/s     10717.4
2

2

4

l
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Exposure-rate constant

• For photons of energy Ei the exposure rate is given by

and the total exposure rate for all of the g-ray energies 

Ei present is

i

iiii
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Exposure-rate constant

• Substituting the expression for the energy flux 

density, we obtain

• This can be converted into R/h, remembering that 

1 R = 2.58  10-4 C/kg and 3600 s = 1 h:

s C/kg 10389.1
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Exposure-rate constant

• The specific g-ray constant for this source is defined as the 

exposure rate from all g-rays per curie of activity, 

normalized to a distance of 1 m by means of an inverse-

square-law correction:

where Ei is expressed in MeV and men/ in m2/kg

• If (men/)Ei,air is given instead in units of cm2/g, the constant 

in this equation is reduced to 19.38

h /Cim R 8.193
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Exposure-rate constant

• Applying this to, for example, 60Co, we note first 
that each disintegration is accompanied by the 
emission of two photons, 1.17 and 1.33 MeV

• Thus the value of ki is unity at both energies

• Using the mass energy absorption coefficient values 
for air at these energies are, we find

which is close to the value given in the table

h /Cim R 29.1

)00262.033.100270.017.1(8.193

2




Exposure-rate constant

• The exposure rate (R/hr) at a distance l meters 

from a point source of A curies is given by

where  is given for the source in R m2/Ci h, and 

attenuation and scattering by the surrounding 

medium are assumed to be negligible

2
l

A

dt

dX 

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Summary

• Decay constants

• Mean life and half life

• Parent-daughter relationships; removal of 

daughter products

• Radioactivation by nuclear interactions

• Exposure-rate constant


