Charged-Particle Interactions in Matter

Chapter 8

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Introduction

- Charged particles have surrounding Coulomb field
- Always interact with electrons or nuclei of atoms in matter
- In each interaction typically only a small amount of particle's kinetic energy is lost ("continuous slowingdown approximation" – CSDA)
- Typically undergo very large number of interactions, therefore can be roughly characterized by a common path length in a specific medium (range)

a - classical

radius of atom

Types of charged-particle interactions in matter

- "Soft" collisions (*b*>>*a*)
 - The influence of the particle's Coulomb force field affects the atom as a whole
 - Atom can be excited to a higher energy level, or ionized by ejection of a valence electron
 - Atom receives a small amount of energy (~eV)
 - The *most probable* type of interactions; accounts for about half of energy transferred to the medium

Types of charged-particle interactions in matter

• Hard ("Knock-on") collisions (*b~a*)

heavy charged particles

- Interaction with a single atomic electron (treated as free), which gets ejected with a considerable kinetic energy
- Interaction probability is different for different particles
- Ejected δ -ray dissipates energy along its track
- Characteristic x-ray or Auger electron is also produced

Types of charged-particle interactions in matter

- Coulomb interactions with nuclear field (b<<a)
 Most important for electrons
 - In *all but* 2-3% of cases electron is deflected through almost elastic scattering, losing almost no energy
 - In 2-3% of cases electron loses almost all of its energy through inelastic radiative (bremsstrahlung) interaction
 - Important for high Z materials, high energies (MeV)
- For antimatter only: in-flight annihilations
 - Two photons are produced

Types of charged-particle interactions in matter

- Nuclear interactions by heavy charged particles
 - A heavy charged particle with kinetic energy ~ 100 MeV and b < a may interact inelastically with the nucleus - One or more individual nucleons may be driven out of
 - the nucleus in an *intranuclear cascade* process
 - The highly excited nucleus decays by emission of socalled *evaporation* particles (mostly nucleons of relatively low energy) and γ -rays
 - Dose may not be deposited locally, the effect is <1-2%

Stopping Power

- The expectation value of the rate of energy loss per unit of path length x
 - Charged particle of type Y
 - Having kinetic energy T
 - Traveling in a medium of atomic number Z
- Units: MeV/cm or J/m

- radiative - energy is carried away by photons

Mass Collision Stopping Power

- Only collision stopping power contributes to the energy deposition (dose to medium)
- Can be further subdivided into soft and hard collision contributions

$$\left(\frac{dT}{\rho dx}\right)_{c} = \left(\frac{dT_{s}}{\rho dx}\right)_{c} + \left(\frac{dT_{h}}{\rho dx}\right)_{c}$$

 Separately calculated for electrons and heavy particles

Mass Collision Stopping Power $\left(\frac{dT}{\rho dx}\right) = \int_{T'_{\min}}^{H} T' Q_c^s dT' + \int_{H}^{T'_{\max}} T' Q_c^h dT'$

- 1. T' is the energy transferred to the atom or electron
- 2. *H* is the somewhat arbitrary energy boundary between soft and hard collisions, in terms of T'
- T'_{max} is the maximum energy that can be transferred in 3. a head-on collision with an atomic electron (unbound)
 - For a heavy particle with kinetic energy < than its $M_0 c^2$ $T'_{max} \approx 2m_0 c^2 \left(\frac{\beta^2}{1-\beta^2}\right) = 1.022 \left(\frac{\beta^2}{1-\beta^2}\right) MeV, \beta = v/c$ For positrons incident, $T'_{max} = T$ if annihilation does not occur

 - For electrons $T'_{\text{max}} \equiv T/2$

Mass Collision Stopping Power

$$\left(\frac{dT}{\rho dx}\right)_c = \int_{T'_{\min}}^H T' Q_c^s dT' + \int_H^{T'_{\max}} T' Q_c^h dT'$$

4. T'_{max} is related to T'_{min} by

$$\frac{T'_{\text{max}}}{T'_{\text{min}}} \approx \left(\frac{2m_0 c^2 \beta^2}{I}\right)^2 = \left(\frac{\left(1.022 \times 10^6 \text{ eV}\right)\beta^2}{I}\right)^2$$

where *I* is the *mean excitation potential* of the atom

5. Q^{s}_{c} and Q^{h}_{c} are the respective differential mass collision coefficients for soft and hard collisions, typically in units of cm²/g MeV or m²/kg J

Soft-Collision Term

$$\left(\frac{dT_s}{\rho dx}\right)_c = \frac{2Cm_0c^2z^2}{\beta^2} \left[\ln\left(\frac{2m_0c^2\beta^2H}{I^2(1-\beta^2)}\right) - \beta^2\right]$$

here $C \equiv \pi (N_A Z/A) r_0^2 = 0.150 Z/A$ cm²/g; in which $N_A Z/A$ is the number of electrons per gram of the stopping medium, and $r_0 = \frac{e^2/m_0 c^2}{2} = 2.818 \times 10^{-13}$ cm is the classical electron radius

- For either electrons or heavy particles (z- elem. charges)
- Based on Born approximation: particle velocity is much greater than that of the atomic electrons ($v = \beta c >> u$)
- Verified with cyclotron-accelerated protons

Soft-Collision Term

- The mean excitation potential *I* is the geometric-mean value of all the ionization and excitation potentials of an atom of the absorbing medium
- In general *I* for elements cannot be calculated
- Must instead be derived from stopping-power or range measurements
 - Experiments with cyclotron-accelerated protons, due to their availability with high β-values and the relatively small effect of scattering as they pass through layers of material
- Appendices B.1 and B.2 list some I-values

Hard-Collision Term

- The form of the hard-collision term depends on whether the charged particle is an electron, positron, or heavy particle
- For heavy particles, having masses much greater than that of an electron, and assuming that *H* << *T*'_{max} the hard-collision term may be written as

$$\left(\frac{dT_h}{\rho dx}\right)_c = k \left[\ln\left(\frac{T'_{\max}}{H}\right) - \beta^2 \right]$$

Mass Collision Stopping Power for Heavy Particles

 $\left(\frac{dT}{\rho dx}\right)_{c} = 0.3071 \frac{Zz^{2}}{A\beta^{2}} \left[13.8373 + \ln\left(\frac{\beta^{2}}{1-\beta^{2}}\right) - \beta^{2} - \ln I \right]$

- Combines both soft and hard collision contributions
- Depends on Z stopping medium, z particle charge, particle velocity through β =v/c (not valid for very low β)
- The term $-\ln I$ provides even stronger variation with Z (the combined effect results in $(dT/\rho dx)_c$ for Pb less than that for C by \cong 40-60 % within the β -range 0.85-0.1)
- No dependence on particle mass

- Includes two corrections:
 - shell correction 2C/Z
 - correction for polarization effect δ

Polarization Effect

- Atoms near the particle track get polarized, decreasing the Coulomb force field and corresponding interaction
- Introduce density-effect correction influencing soft collisions
- The correction term, δ , is a function of the composition and density of the stopping medium, and of the parameter

$$\chi \equiv \log_{10} \left(p / m_0 c \right) = \log_{10} \left(\beta / \sqrt{1 - \beta^2} \right)$$

for the particle, in which p is its relativistic momentum mv, and m_0 is its rest mass

- Mass collision stopping power decreases in condensed media
- Relevant in measurements with ion chambers at energies > 2 MeV

Mass Radiative Stopping Power

- Only electrons and positrons are light enough to generate significant bremsstrahlung (1/m² dependence for particles of equal velocities)
- The rate of bremsstrahlung production by electrons or positrons is expressed by the *mass radiative stopping power* (in units of MeV cm²/g)

$$\left(\frac{dT}{\rho dx}\right)_{r} = \sigma_{0} \frac{N_{A}Z^{2}}{A} \left(T + m_{0}c^{2}\right)\overline{B}_{r}$$

here the constant $\sigma_0 = \frac{1}{137}(e^2/m_0c^2)^2 = 5.80 \times 10^{-28}$ cm²/atom, *T* is the particle kinetic energy in MeV, and \mathcal{B}_r is a slowly varying function of *Z* and *T*

Mass Radiative Stopping Power

- The mass radiative stopping power is proportional to $N_A Z^2/A$, while the mass collision stopping power is proportional to $N_A Z/A$, the electron density
- Ratio of radiative to collision stopping power

$$\frac{\left(\frac{dT}{\rho dx}\right)_{r}}{\left(\frac{dT}{\rho dx}\right)_{c}} \cong \frac{TZ}{n}$$

T – kinetic energy, Z – atomic number, n ~700 or 800 MeV

Radiation Yield

- The *radiation yield* $Y(T_0)$ of a charged particle of initial kinetic energy T_0 is the total fraction of that energy that is emitted as electromagnetic radiation while the particle slows and comes to rest
- For heavy particles $Y(T_0) \approx 0$
- For electrons the production of bremsstrahlung x-rays in radiative collisions is the only significant contributor to $Y(T_0)$
- For positrons, in-flight annihilation would be a second significant component, but this has typically been omitted in calculating $Y(T_0)$

- The range \Re of a charged particle of a given type and energy in a given medium is the expectation value of the pathlength *p* that it follows until it comes to rest (discounting thermal motion)
- The projected range <t> of a charged particle of a given type and initial energy in a given medium is the expectation value of the <u>farthest depth of</u> <u>penetration</u> t_t of the particle in its initial direction
- Both are non-stochastic quantities

CSDA Range: Other Heavy Particles

 $T = M_0 c^2$

For particles with the same velocity

- Kinetic energy of a particle ~ to its rest mass
- Stopping power for singly charged particle is independent of mass
- Consequently, the range is ~ to its rest mass
- Can calculate the range for a heavy particle based on CSDA range values for protons at energy $T_0^p = T_0 M_0^p / M_0$

$$\Re_{CSDA} = \frac{\Re^{P}_{CSDA} M_{0}}{M^{P}_{0} z^{2}}$$

'ABLE 8.4. Comparison of Maximum Penetration Depth t_{max} with CSDA Range or Electrons of Energy T_o				
T_o (MeV)	Ζ	t _{max} (mg/cm ²)	R _{CSDA} (mg/cm ²)	t _{max} / R _{CSDA}
.05	13 (Al)	5.05	5.71	88
.10	13 (Al)	15.44	18.64	.00
.15	13 (Al)	31.0	36.4	.05
.05	29 (Cu)	5.42	6.90	79
.10	29 (Cu)	17.1	22.1	.15
.15	29 (Cu)	34.0	42.8	79
.05	47 (Ag)	5.04	7.99	63
.10	47 (Ag)	15.6	25.2	.03
.15	47 (Ag)	30.2	48.4	62
.05	79 (Au)	4.73	9.88	48
.10	79 (Au)	14.3	30.3	47
.15	79 (Au)	27.6	57.5	49

Dose from Heavy Particles

Based on range can find the residual kinetic energy of exiting particle

 $\Delta T = T_0 - T_{ex}$ $E = \Phi \Delta T$

$$D = 1.602 \times 10^{-10} \frac{\Phi \Delta T \cos \theta}{\rho t}$$

If beam is not perpendicular – accounts for angle Dose in Gray

$$\overline{D} = 1.602 \times 10^{-10} \frac{\Phi \Delta T_c}{\rho t}$$

