Charged-Particle Interactions in Matter

Chapter 8

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Outline

- Impact parameter and types of charged particle interactions
- Stopping power
- Range
- Calculation of absorbed dose
- Approach typically depends on particle mass (heavy vs. electrons)

Introduction

- Charged particles have surrounding Coulomb field
- Always interact with electrons or nuclei of atoms in matter
- In each interaction typically only a small amount of particle's kinetic energy is lost ("continuous slowingdown approximation" – CSDA)
- Typically undergo very large number of interactions, therefore can be roughly characterized by a common path length in a specific medium (range)

Types of charged-particle interactions in matter

- "Soft" collisions (*b*>>*a*)
 - The influence of the particle's Coulomb force field affects the atom as a whole
 - Atom can be excited to a higher energy level, or ionized by ejection of a valence electron
 - Atom receives a small amount of energy (~eV)
 - The most probable type of interactions; accounts for about <u>half</u> of energy transferred to the medium

Types of charged-particle interactions in matter

- Hard ("Knock-on") collisions (*b~a*)
 - Interaction with a single atomic electron (treated as free), which gets ejected with a considerable K.E.
 - Ejected δ -ray dissipates energy along its track
 - Interaction probability is different for different particles (much lower than for soft collisions, but fraction of energy spent is comparable)
 - Characteristic x-ray or Auger electron is also produced

Types of charged-particle interactions in matter

- Coulomb interactions with nuclear field (*b*<<*a*)
 - Most important for electrons
 - In all but 2-3% of cases electron is deflected through
 - almost elastic scattering, losing almost no energy
 - In 2-3% of cases electron loses almost all of its energy through inelastic radiative (bremsstrahlung) interaction
- Important for high Z materials, high energies (MeV)
- For antimatter only: in-flight annihilations
 - Two photons are produced

Types of charged-particle interactions in matter

- Nuclear interactions by heavy charged particles
 - A heavy charged particle with kinetic energy ~ 100 MeV and *b*<*a* may interact inelastically with the nucleus
 - One or more individual nucleons may be driven out of the nucleus in an *intranuclear cascade* process
 - The highly excited nucleus decays by emission of socalled *evaporation* particles (mostly nucleons of relatively low energy) and γ -rays
 - Dose may not be deposited locally, the effect is <1-2%

Stopping Power

- The expectation value of the rate of energy loss per unit of path length x
 - Charged particle of type Y
 - Having kinetic energy T
 - Traveling in a medium of atomic number Z
- Units: MeV/cm or J/m

Mass Collision Stopping Power

- Only collision stopping power contributes to the energy deposition (dose to medium)
- Can be further subdivided into soft and hard collision contributions

$$\left(\frac{dT}{\rho dx}\right)_{c} = \left(\frac{dT_{s}}{\rho dx}\right)_{c} + \left(\frac{dT_{h}}{\rho dx}\right)_{c}$$

 Separately calculated for electrons and heavy particles

Mass Collision Stopping Power

$$\left(\frac{dT}{\rho dx}\right)_{c} = \int_{T'_{\min}}^{H} T' Q_{c}^{s} dT' + \int_{H}^{T'_{\max}} T' Q_{c}^{h} dT'$$

- *1.* T' is the energy transferred to the atom or electron
- *H* is the somewhat arbitrary energy boundary between 2 soft and hard collisions, in terms of T'
- 3. T'_{max} is the maximum energy that can be transferred in a head-on collision with an atomic electron (unbound)
 - For a heavy particle with kinetic energy < than its M_0c^2 $T'_{max} \approx 2m_0c^2 \left(\frac{\beta^2}{1-\beta^2}\right) = 1.022 \left(\frac{\beta^2}{1-\beta^2}\right) \text{MeV}, \beta = v/c$ For positrons incident, $T'_{max} = T$ if annihilation does not occur

 - For electrons $T'_{\text{max}} \equiv T/2$

Mass Collision Stopping Power

$$\left(\frac{dT}{\rho dx}\right)_{c} = \int_{T_{\min}}^{H} T' Q_{c}^{s} dT' + \int_{H}^{T_{\max}} T' Q_{c}^{h} dT$$

4. T'_{max} is related to T'_{min} by

$$\frac{T_{\text{max}}}{T_{\text{min}}} \approx \left(\frac{2m_0 c^2 \beta^2}{I}\right)^2 = \left(\frac{(1.022 \times 10^6 \text{ eV})\beta^2}{I}\right)^2$$

where *I* is the *mean excitation potential* of the atom

5. Q_c^s and Q_c^h are the respective differential mass collision coefficients for soft and hard collisions, typically in units of cm²/g MeV or m²/kg J

Soft-Collision Term

$$\frac{dT_s}{\rho dx}\bigg|_c = \frac{2Cm_0c^2z^2}{\beta^2} \bigg[\ln\bigg(\frac{2m_0c^2\beta^2H}{I^2(1-\beta^2)}\bigg) - \beta^2 \bigg]$$

here $C \equiv \pi (N_A Z/A) r_0^2 = 0.150 Z/A \text{ cm}^2/\text{g}$; in which $N_A Z/A$ is the number of electrons per gram of the stopping medium, and $r_0 = \frac{e^2/m_0 c^2}{2.818 \times 10^{-13}}$ cm is the classical electron radius

- For either electrons or heavy particles (z elem. charges)
- Based on Born approximation: particle velocity is much greater than that of the atomic electrons ($v = \beta c > u$)
- · Verified with cyclotron-accelerated protons

Soft-Collision Term

· Can further simplify the expression by introducing

$$k = \frac{2Cm_0c^2z^2}{\beta^2} = 0.1535 \frac{Zz^2}{A\beta^2} \frac{MeV}{g/cm^2}$$

• The factor *k* controls the dimensions in which the stopping power is to be expressed

Soft-Collision Term: Excitation Potential

- The mean excitation potential *I* is the geometric-mean value of all the ionization and excitation potentials of an atom of the absorbing medium
- In general *I* for elements cannot be calculated
- Must instead be derived from stopping-power or range measurements
 - Experiments with cyclotron-accelerated protons, due to their availability with high β-values and the relatively small effect of scattering as they pass through layers of material
- Appendices B.1 and B.2 list some I-values

Soft-Collision Term: Excitation Potential

- Combines both soft and hard collision contributions
- No dependence on particle mass
- Depends on particle properties:

z - particle charge

- particle velocity through $\beta = v/c$ (not valid for very low β)

Mass Collision Stopping Power for Heavy Particles

$$\left(\frac{dT}{\rho dx}\right)_{c} = 0.3071 \frac{Zz^{2}}{A\beta^{2}} \left[13.8373 + \ln\left(\frac{\beta^{2}}{1-\beta^{2}}\right) - \beta^{2} - \ln I \right]$$

- Depends on stopping medium properties through Z/A, which decreases by ~20% from C to Pb
- The term $-\ln I$ provides even stronger variation with Z (the combined effect results in $(dT/\rho dx)_c$ for Pb less than that for C by \cong 40-60 % within the β -range 0.85-0.1)

Overall trend for heavy charged particles: stopping power decreases with Z

- correction for polarization effect δ

Shell Correction

- When the velocity of the passing particle is *not* much greater than that of the atomic electrons in the stopping medium, the mass-collision stopping power is overestimated
- Since *K*-shell electrons have the highest velocities, they are the first to be affected by insufficient particle velocity, the slower *L*-shell electrons are next, and so on
- The so-called "shell correction" is intended to account for the resulting error in the stopping-power equation
- The correction term *C*/*Z* is the same for all charged particles of the same β, and is a function of the medium

Polarization Effect

- Atoms near the particle track get polarized, decreasing the Coulomb force field and corresponding interaction (and energy loss)
- Introduce density-effect correction influencing soft collisions
- The correction term, δ , is a function of the composition and density of the stopping medium, and of the parameter

 $\chi \equiv \log_{10} \left(p / m_0 c \right) = \log_{10} \left(\beta / \sqrt{1 - \beta^2} \right)$

for the particle, in which p is its relativistic momentum mv, and m_0 is its rest mass

- Mass collision stopping power decreases in condensed media
- Relevant in measurements with ion chambers at energies > 2 MeV
- Effect is always present in metals (δ ~0.1 even at low energies)

Mass Radiative Stopping Power

- Only electrons and positrons are light enough to generate significant bremsstrahlung (1/m² dependence for particles of equal velocities)
- The rate of bremsstrahlung production by electrons or positrons is expressed by the *mass radiative stopping power* (in units of MeV cm²/g)

$$\left(\frac{dT}{\rho dx}\right)_r = \sigma_0 \frac{N_A Z^2}{A} \left(T + m_0 c^2\right) \overline{B}_r$$

here the constant $\sigma_0 = \frac{1}{137}(e^2/m_0c^2)^2 = 5.80 \times 10^{-28}$ cm²/atom, *T* is the particle kinetic energy in MeV, and *B*_r is a slowly varying function of *Z* and *T*

Mass Radiative Stopping Power

- The mass radiative stopping power is proportional to $N_A Z^2/A$, while the mass collision stopping power is proportional to $N_A Z/A$, the electron density
- Ratio of radiative to collision stopping power

$$\frac{\left(\frac{dT}{\rho dx}\right)_r}{\left(\frac{dT}{\rho dx}\right)_c} \cong \frac{TZ}{n}$$

T – kinetic energy, Z – atomic number, n ~700 or 800 MeV

- The *radiation yield* $Y(T_0)$ of a charged particle of initial kinetic energy T_0 is the total fraction of that energy that is emitted as electromagnetic radiation while the particle slows and comes to rest
- For heavy particles $Y(T_0) \approx 0$
- For electrons the production of bremsstrahlung x-rays in radiative collisions is the only significant contributor to $Y(T_0)$
- For positrons, in-flight annihilation would be a second significant component, but this has typically been omitted in calculating $Y(T_0)$

Restricted Stopping Power

- Energy cutoff allows to account for escaping deltarays with energy ≥∆ (not depositing energy locally)
- Linear Energy Transfer (radiobiology and microdosimetry)

$$L_{\Delta}(keV/\mu m) = \frac{\rho}{10} \left[\left(\frac{dT}{\rho dx} \right)_{\Delta} \left(MeV \ cm^2/g \right) \right]$$

• If the cut-off energy Δ is increased to T_{max} – use unrestricted *LET*:

CSDA Range: Other Heavy Particles

For particles with the same velocity

• Kinetic energy of a particle ~ to its rest mass

- Stopping power for singly charged particle is independent of mass
- Consequently, the range is ~ to its rest mass
- Can calculate the range for a heavy particle based on CSDA range values for protons at energy $T_0^p = T_0 M_0^p / M_0$

$$\Re_{CSDA} = \frac{\Re_{CSDA}^{P} M_{0}}{M_{0}^{P} z^{2}} \qquad z - \text{charge of heavy particle}$$

 $T = M_0 c^2$

Electron Range

- Electrons typically undergo multiple scatterings
- Range straggling and energy straggling due to stochastic variations in rates of energy loss
- Makes range less useful characteristic, except for low-Z materials, where range is comparable to max penetration depth t_{max}
- For high-Z range increases, *t* is almost independent

ABLE 8.4. Comparison of Maximum Penetration Depth t _{max} with CSDA Range ⁴ or Electrons of Energy T,				
T _o (MeV)	z	⁴ max (mg/cm ²)	ℜ _{CSDA} (mg/cm ²)	t _{max} / %CSDA
.05	13 (Al)	5.05	5,71	.88
.10	13 (Al)	15.44	18.64	.83
.15	13 (AI)	31.0	36.4	.85
.05	29 (Cu)	5.42	6.90	.79
.10	29 (Cu)	17.1	22.1	.77
.15	29 (Cu)	34.0	42.8	.79
.05	47 (Ag)	5.04	7.99	.63
.10	47 (Ag)	15.6	25.2	.62
.15	47 (Ag)	30.2	48.4	.62
.05	79 (Au)	4.73	9.88	.48
.10	79 (Au)	14.3	30.3	.47
.15	79 (Au)	27.6	57.5	.48

Dose from Heavy Particles

Based on range can find the residual kinetic energy of exiting particle

 $\Delta T = T_0 - T_{ex}$ $E = \Phi \Delta T$

$$D = 1.602 \times 10^{-10} \frac{\Phi \Delta T \cos \theta}{\rho t}$$

If beam is not perpendicular – $\rho t/\cos\theta$ accounts for angle Dose in Gray

• Average dose:

$$\overline{D} = 1.602 \times 10^{-10} \frac{\Phi \Delta T_c}{\rho t}$$

Calculation of Absorbed Dose at Depth

$$D_{w} = 1.602 \times 10^{-10} \int_{0}^{T_{\text{max}}} \Phi_{x}(T) \left(\frac{dT}{\rho dx}\right)_{c,w} dT$$

- At any point *P* at depth *x* in a medium *w* for know fluence spectrum
- For *x* below particle range

$$D_x = 1.602 \times 10^{-10} \Phi_0 \left(\frac{dT}{\rho dx}\right)_{c,w}$$

Summary

- Types of charged particle interactions
- Stopping power
- Range
- Calculation of absorbed dose