X-Ray Production and Quality

Chapter 9

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Introduction

- Physics of x-ray generation
 - Fluorescence x-rays
 - Bremsstrahlung x-rays
- Beam quality description
 - Hardness or penetrating ability
 - Energy spectral distribution

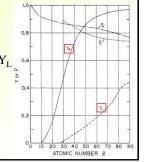
Fluorescence Yield

- Biological effectiveness
- X-ray filtration

Fluorescence X-Rays

- Produced when an inner shell electron in an atom is removed as a result of
 - Electron capture or internal conversion
 - Photoelectric effect
 - Hard collision with charged particle
- The minimum energy required to ionize the inner shell electron is E_b

hv


Video at

escape the atom – fluorescence yield Y_K , Y_L • $Y_K = 0$ for Z<10 (Ne)

• The probability that a

fluorescence x-ray will

- $Y_L = 0$ for Z<29 (Cu)
- $Y_{\rm M} \sim 0$ for all Z

Initiating event

- The minimum energy supplied has to be $> E_b$
- When electrons are used to produce fluorescence, they appear against a very strong background of continuous bremsstrahlung spectrum
- To obtain a relatively pure fluorescence x-ray source have to use either heavy charged particles or x-rays (photoelectric effect)
- Both methods are used for trace-element fluorescence analysis

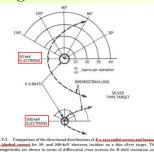
K-Fluorescence Photon Energy

- Secondary event: an electron from higher level fills out the K-shell vacancy (not all transitions are allowed by quantum mech. selection rules)
- A fluorescence photon with the energy equal to the difference between the two energy levels may be emitted
- X-ray fluorescence has a very narrow energy line; often used for calibration of spectrometers
- No angular correlation to the direction of the incident particle

K-Fluorescence Photon Energy

TABLE 9.2	K-Shell X-Ray	Fluorescence	Energies	in Lungsten

Transition	Designation	Energy (keV)	Relative No. of Photons	
K-L _{III}	α_1	59.321	100	
$K-L_{II}$	α_2	57.984	57.6	
$K-M_{II}$	β_3	66.950	10.8	
$K-M_{\rm HI}$	β_1	67.244	20.8	
$K-M_{IV}$	$\beta_{5/1}$	67.654	0.233	
$K-M_V$	$\beta_{5/2}$	67.716	0.293	
$K-N_{II}$	$\beta_{2/1}$	69.033	2.45	
$K-N_{III}$	$\beta_{2/2}$	69.101	4.77	
$K-N_{IV}$	$\beta_{4/1}$	69.269 69.276 ≈ 69.1	0.127 8.4	
$K-N_V$	$\beta_{4/2}$	69.283	0.127 0.4	
$K-O_{II}$	$\beta_{2/3}$	69.478 69.484	1.07	
$K-O_{III}$	$\beta_{2/4}$	69.489	1.07	


"After Storm and Israel (1970). Reproduced with permission from Academic Press

With typical spectroscopic resolution can observe two doublets separated by 10 keV

Angular distribution

- Fluorescence: emitted isotropically with respect to both energy and intensity
- Bremsstrahlung: emitted anisotropically, more forwardly directed, especially with increasing energy
- Generally true irrespective of Z,T, or target thickness

Angular distribution

Bremsstrahlung production

 In ~2-3 % of the cases in which the electron passes near the nucleus, an inelastic radiative interaction occurs in which an x-ray is emitted

- The electron is not only deflected, but gives a significant fraction (up to 100%) of its KE to the photon
- Such x-rays are referred to as bremsstrahlung, the German word for "braking radiation"

Video https://www.youtube.com/watch?v=GBj1ln6x3LY

Bremsstrahlung production efficiency

- Thin target: the beam energy and stopping power is not changed; little energy is deposited
- Thick target: electron spends most of its energy or is completely stopped
- Bremsstrahlung production yield for thin target:

$$\frac{\left(\frac{dT/\rho dx}{r}\right)_{r}}{\left(\frac{dT/\rho dx}{r}\right)_{r}} = \frac{\left(\frac{dT/\rho dx}{r}\right)_{r}}{\left(\frac{dT/\rho dx}{r}\right)_{r} + \left(\frac{dT/\rho dx}{r}\right)_{r}} \approx \frac{TZ}{n + TZ}$$

n depends on energy and material

Bremsstrahlung production efficiency

- High-Z targets convert a larger fraction of electron's energy into bremsstrahlung
- Most of the energy is spent in collision interactions, resulting in target heating
- Tungsten is a common choice for target due to high Z and high melting point
- Production efficiency depends on energy:
 - At 100 keV 1% goes into bremsstrahlung
 - At 1 GeV 99% goes into bremsstrahlung

Bremsstrahlung production efficiency

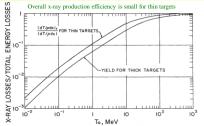
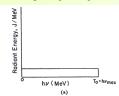



FIGURE 9.4. Fraction of electron energy losses that are spent in bremsstrahlung x-ray production in thin (upper curve) or thick (lower curve) tungsten targets (data after Berger and Seltzer, 1933). Upper curve: Eq. (9.2); lower curver radiation yield (fraction of the incident electron kinetic energy T_0 that goes into x-ray production as the particle slows to a stop in a thick target).

Bremsstrahlung energy spectrum

Thin target, $T_0 \ll m_0 c^2$

Maximum photon energy $hv_{\text{max}} = T_0$ Duane and Hunt's law

- For thin target the radiant-energy spectrum is constant over the whole energy range
- T₀ is the kinetic energy of the incident electron

Bremsstrahlung energy spectrum for thin target

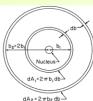


FIGURE 9.6. Classical explanation of the thintarget x-ray spectrum generated by nonrelativistic electrons. Consider a beam of electrons of kinetic energy T_c entering the page perpendicularly, and each passing the nucleus at some distance (impact to the property of the page 100 to the area $dA_t = 2$ πh_0 , the Nor $b = h_0 = 2h_1$, $dA_t = 2$ dA_t . Thus twice as many photons (N_t) come from interactions in dA_t at the N_t from dA_t . If the magnitude of the interaction (i.e., the x-ray quantum energy hy produced) is assumed to be proportional to $1/h_0$, then $N_t = 2$ h_0 . Therefore $N_t = N_t - N_t - N_t$ and the x-ray radian-energy spectrum should be flat, as it is observed to $N_t = N_t - N_t - N_t$.

If assume:

- -the probability of interaction ~ b (through dA)
- the intensity of interaction (energy loss) $hv \propto 1/b$

 $\Rightarrow Nhv = const$

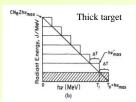
Bremsstrahlung energy spectrum

- Thick target can be considered as a stack of thin targets, adequate in aggregate depth to stop the electron beam; the electrons lose their kinetic energy gradually by many small collision interactions
- Radiative losses are negligible as a mechanism for reducing the beam energy for $T_0 \ll m_0 c^2$

Bremsstrahlung energy spectrum

Thick target, $T_0 << m_0 c^2$ $CNe^{Zh\nu_{mos}}$ $CNe^{Zh\nu_{mos}}$ $CNe^{Zh\nu_{mos}}$ $CNe^{Zh\nu_{mos}}$ $CNe^{Zh\nu_{mos}}$ Che The mos Che T

- The collision stopping power increases as 1/T for decreasing energy
- The foils in the stack are assumed to become progressively thinner with increasing depth, so that each one reduces the beam energy by the same amount


Bremsstrahlung energy spectrum

• For N_c incident electrons the radiant energy generated in a thick target can be crudely estimated by:

$$R \cong 1 \times 10^{-3} N_e Z T_0^2 \text{ MeV}$$

- Constant has units of MV⁻¹
- Comparison with radiation yield in Appendix E, where Y(T₀)=R/T₀N_e shows agreement within 30% with tabulated values

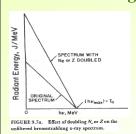
Bremsstrahlung energy spectrum

The array of rectangular areas (representing the x-ray outputs of individual foils comprising the thick target) can be fitted by a triangular envelope called the *Kramers spectrum*, described by formula

$$R'(hv) = CN_e Z(hv_{max} - hv)$$

 Here R' is the differential radiant-energy spectral distribution of bremsstrahlung generated in the thick target

Bremsstrahlung energy spectrum


• The area under triangle represents the total radiant energy of the unfiltered bremsstrahlung

$$R = \frac{C}{2} N_e Z (hv)_{\text{max}}^2 = \frac{C}{2} N_e Z T_0^2$$

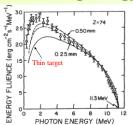
• Comparing with analytical expression for R, find that $C/2=1\times 10^{-3}$. In Joules:

$$R \cong 1.6 \times 10^{-16} N_e Z T_0^2$$
 J

Bremsstrahlung energy spectrum

the unfiltered bremsstrahlung x-ray spectrum

- · Graphic effect of changing the parameters
- · Never observed experimentally due to self-absorption within the target


Bremsstrahlung energy spectrum

- For $T_0 >> m_0 c^2$ (relativistic electrons) have to use more general Bethe-Heitler formula for radiative stopping power
- Resulting photon output spectrum can be expressed through differential cross-section

$$\frac{d\sigma_r}{d(hv)} \propto \frac{B_r}{hv}$$

 Here B_r is gradually decreasing dimensionless function (tabulated)

Bremsstrahlung energy spectrum

 $T_0 >> m_0 c^2$ There is less difference between thin and thick target spectra

FIGURE 9.8. Bremsstrahung intensity (energy-tidu density) spectrum in the 0° direction for 11.5-MeV electrons on a 1.5-mm tungsten target, as measured with a Compton spectrometer (points). The Behre-Heilter this target spectrum, modified by the photon absorption in window materials, is shown by the solid curve (lower). The dashed curves show corresponding theoretical spectra for 10-mil (i-mm) and 20-mil (i-mm) tungsten targets corrected for attenuation in the target material as well. (After Motz et al., 1953. Reproduced with permission from J. W. Motz

Bremsstrahlung directional dependence

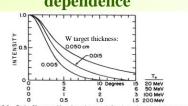
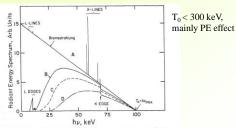


FIGURE 9.9. Ratio of bremsstrahlung intensity at angle θ to that at $\theta = 0$ for three thicknesses of tungsten target, as calculated by Schiff (1946). Note that the curves for different energies T_0 differ only by a scale factor that is inversely proportional to T_0 . (Reproduced by permission of

- The x rays tend to be emitted with an appreciable sideways component for low-energy electron beams
- More forward peaked as T₀ is increased


Bremsstrahlung directional dependence

- The forward peaking at high energies necessitates the use of a conical beam-flattening filter in linac x-ray beams for radiotherapy applications, even though the phenomenon becomes less pronounced for thicker targets
- Such a filter attenuates the beam less strongly as a function of distance away from its central axis, thus producing a beam of more uniform intensity over a useful area
- · Exact alignment of such a filter is critical

X-ray filtration

- Unfiltered x-ray beam contains both fluorescence (characteristic of the target) and bremsstrahlung x-rays
- The principle result of adding filter is the removal photons at energies where attenuation coefficient is largest (since the photoelectric interaction coefficient varies approximately as 1/(hv)³ in this energy range)
- Can narrow the spectral distribution progressively; beam is "hardened" by filtration

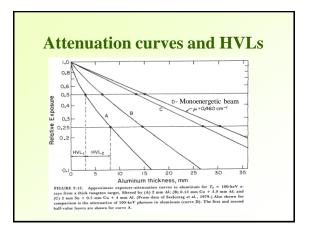
X-ray filtration

TGURES 3.10. X-ray spectrum from 100-keV electrons on a thick unquient narget. Upper curve to Unfliered. B. Filtered through 0.1 mm W in excaping the target. C. folditionally filtered through 2 mm Al. D. Filtered through 0.1.5 mm C and 3.9 mm Al in addition to inherent target literation. To avoid confusion, the K-florescence liters are not shown in curve B, C, and D, but ex attenuated from their heights in curve A in the same proportion as the bremstrahlung is treasured at the same curveies.

X-ray filtration

- The most common x-ray filtering media are lead, tin, copper, and aluminum, which may be used alone or in combination
- The advantage of combination filters is that they are generally capable of narrowing the spectrum to any desired degree while preserving more of the x-ray output than can be achieved with a single filtering material
- The higher-Z filters provide strong filtering action but cause discontinuities at the shell binding energies. The lower-Z filters tend to smooth the resulting spectrum

X-ray filtration


- It is important in using combination filters that they be positioned in the beam in *descending order* of Z, going in the direction of the rays
- This allows each filter to remove the fluorescence x rays that originate in the higher-Z filter upstream from it
 - Aluminum ($hv_K = 1.5 \text{ keV}$) is best for the final filter - Copper ($hv_K = 9 \text{ keV}$) fluorescence also is low enough in
 - Copper (hv_K = 9 keV) fluorescence also is low enough ir energy not to be detectable in most cases.
 - Neither tin (hv_K = 29 keV) nor lead (hv_K = 85 KeV) should be used without sufficient following filtration to remove the fluorescence, unless those photons are desired as part of the output

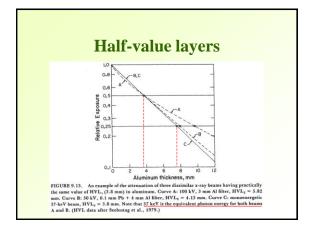
X-ray filtration

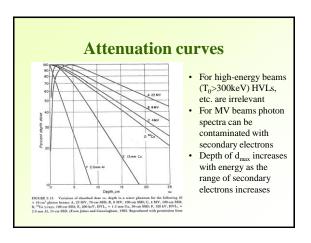
- At higher energies (T₀ > 300 keV) the photoelectric effect becomes less important than the Compton effect, and the total absorption is less energy-dependent
- The filtering of an x-ray spectrum generated by MV electrons mainly removes the photons below a few hundred keV without greatly modifying the spectral shape at higher energies
- The use of a thick high-Z filter such as lead on MV x-ray beam tends to filter out the highest-energy photons (>4 MeV) through pair production, as well as the lowest through the photoelectric effect

X-ray beam quality

- The quality of the beam can be specified either in terms of its spectrum or its attenuation characteristics in a medium
- It is possible (with some limitations) to derive an x-ray spectrum from the shape of an attenuation curve, which is a "signature" for the related spectrum in a given medium
- Thus attenuation data can be used to characterize x-ray beams

Half-value layers


TABLE 9.4. Half-Value Layers and Homogeneity Coefficients for the Aluminum Attenuation Curves in Fig. 9.12								
Curve	Energy (keV)	Filter (mm)	HVL ₁ (mm Al)	HVL ₂ (mm Al)	HC (Al)			
A	100	2 Al	3.02	5.12	0.59			
В	100	0.15 Cu + 3.9 Al	6.56	8.05	0.81			
C	100	2 Sn + 0.5 Cu + 4 Al	13.4	13.5	0.99			


*Monoenergetic

- The attenuation curves, can be reasonably well specified for radiological applications in terms of their first and second half-value layers, HVL₁, and HVL₂
- HVL₁, is defined as the thickness required to reduce the exposure by half, in narrow-beam geometry; HVL₂ is the thickness necessary to reduce it by half again under the same conditions
- Homogeneity coefficient (HC), defined as the ratio HVL₁/HVL₂. This
 approaches unity as the spectrum is narrowed by filtration

Half-value layers

- Another quantity that is sometimes used in beamquality specification is the *equivalent photon* energy, hv_{eq}, defined as the quantum energy of a monoenergetic beam having the same HVL₁, as the beam being specified
- The equivalent photon energy gives no more information than HVL₁, but gives it in a form that is especially useful in describing heavily filtered beams approaching monochromaticity

Summary

- Physics of x-ray generation
 - Fluorescence x-rays
 - Bremsstrahlung x-rays
- X-ray filtration
- Beam quality description
 - Energy spectral distribution
 - Attenuation curves and half-value layers