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Why you should refine a structure
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 We have considered how atoms are located by Patterson, 
direct methods or specialized methods, as well as from 
Fourier difference maps

 The atomic positions extracted from these methods are close 
to the correct values, but very rarely in exactly the right place

 During a process called refinement, the starting atomic 
positions are optimized
o the goal is to get an as good fit between your model and your 

data as possible
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Possible refinement methods
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 You can modify your model in order to obtain better 

agreement between observed and calculated Fourier maps

 Alternatively, you can modify your model to get better 

agreement between observed and calculated structure 

factor magnitudes (|Fo| and |Fc|)

 For most small molecule structure solutions, the latter 

process is used
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Letting the computer do the work
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 The refinement process can be described as a minimization process

o minimization of the difference between |Fo| and |Fc|

o easily automated

 The best model is obtained by minimizing the following expression:

o called a least squares minimization

o wkhl are weighing factors related to the quality/reliability of the data

o k is a scale factor (inverse of scale factor that would need to be 

applied to |Fo|)
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Least squares minimization
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 Imagine a function F that is linearly dependent on a set of 

parameters, xj

o F(x1,x2,…xn) = p1x1 + p2x2 + …pnxn

 Suppose we make m independent measurements of F for 

different values of xj

o we want to get the parameters pj

o if m = n, we just have to solve a set of simultaneous equations

o if m > n, the system is overdetermined

2 0 2 3 - 2 0 2 4



Crystallography and least squares
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 The crystallographic function F(hkl) (with the variables: atomic 

coordinates and displacement parameters of each atom) is not a 

linear function of the model parameters

 The equation cannot be solved for the correct parameters in one go

 Use an iterative process instead
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Refinement iterations
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 Our goal is to minimize 

 We can use an iterative least squares approach to give parameter shifts 

that will lead to an improved agreement between |Fo| and |Fc|

 The process is repeated until the suggested shifts are insignificantly 

small

o usually considered to be achieved when parameter shift << standard 

deviation

o at this minimum, the derivative of R’ with respect to each parameter 

(xj, yj, zj Bj) should be zero
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Convergence
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 A refinement process is usually considered as finished when 

convergence is reached

o when all parameter shifts << standard deviation

 However, the process only works well if the starting model is 

sufficiently good

o many local minima in which the refinement could “get stuck”

 Other methods offer better chances to find the absolute minimum 

from a bad starting model

o simulated annealing, random walk…
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False minima
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Errors

1 0

 The errors of all observations are included in the refinement 

process via the weight factors

o weak or uncertain reflections will have less weight than strong 

reflections

 The least squares output will provide esds (estimated standard 

deviations) for all refined parameters

 Watch out for high correlation coefficients

o correlation coefficients tell you whether two model parameters 

really are independent
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Judging the refinement
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 Statistical values are used to judge the goodness of a refinement

 The level of agreement between observed and calculated structure 

factors is often indicated by R factors and Goodness of Fit (GooF) 

values

o for n observations and p parameters
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R factors

1 2

 For a good small molecule refinement, the final RF values are 

expected to be ~0.02-0.08

 Placing random atoms in a unit cell is expected to give R factors of 

0.83 and 0.59 for centric and acentric space groups, respectively

 Obtaining RF < 0.20 usually means that the structural model has no 

major errors in it
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Refinement strategy
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 Unit cell constants need to be refined
o original indexing just gives approximate values

 Atomic positions obtained by Patterson searches, direct methods or 
other approaches should be refined
o look at interatomic distances to judge whether refined positions 

make sense

o atoms in special positions cannot move in all directions

 Atomic displacement parameters should be varied
o can indicate wrong atomic weight: Zmodel > (<) Zreal leads to large 

(small) ADPs

o isotropic overall temperature factors can be obtained from Wilson 
plots as a first approximation
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Estimating the overall temperature factor
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 We know that observed structure factor magnitudes are smaller than 

real values because of thermal motion and scaling issues 

o for random atom placement in the unit cell

 Both K and B can be obtained from a Wilson plot
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Wilson plots
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“Crystal Structure Analysis for Chemists and 
Biologists”, Glusker, Lewis and Rossi, VCH, 1994. 



Restraints and constraints
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 It is possible to impose certain restrictions on the refinement due to 
some knowledge that is not inherent in the diffraction data

o restraints and constraints

 Chemical knowledge, such as bond distances and angles, can be used as 
a restraint in a minimization procedure

o a restraint will make certain moves unfavorable, but will not 

prohibit them

 Knowledge about molecular connectivity can be used

o e.g., a rigid aromatic ring can be described by three positional and 

three rotational parameters instead of 4n parameters (n = number 

of atoms)

o this would be a rigid body constraint



When to use restraints and constraints
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 Restraints and constraints can improve your data to parameter ratio 

by reducing the number of parameters or “adding” observations

o very useful if your data are limited or of low quality

 They improve the convergence properties of your refinement and 

may allow a refinement to converge to the correct answer even if 

the starting model is poor

o they make potentially disastrous parameter changes (e.g., one 

carbon atom moving so far that the aromatic ring will no 

longer be connected) unfavorable or prohibit them altogether
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What to make of the outcome of your refinement
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 There are several ways of judging whether the outcome of your 
refinement is any good
o low R-factors

o residual electron density map should have no large positive or 
negative peaks

o difference Fourier map should be relatively flat

o the atomic arrangement should be chemically and physically 
sensible

 All of this information can be found in a *.cif file, which you will 
usually be asked to submit with any crystal structure publications
o cif stands for crystal information file

o you need to know what the entries in it mean to make sense of it
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Interpretation of atomic coordinates
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 Atomic coordinates are usually listed as fractional coordinates

o an x-coordinate of 0.6 means: translation of 0.6 of the unit cell 
along the a-axis

o makes comparison of isostructural materials easy

o no need to worry about angles between unit cell axes when 
describing atom locations

 To judge whether a structure is sensible, you need to interpret the 
atomic connectivity (bonding) and packing

o you need to calculate interatomic distances

o structural drawings

 Watch out: Occasionally, you will come across files that list Cartesian 
coordinates instead of fractional coordinates!



Atomic connectivity
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 The presence of bonds is usually judged by interatomic distances

o especially for molecular compounds, chemical bonds result in 

well-defined interatomic distances

• C(sp3)-C(sp3) ~1.54 Å

• C(sp2)-C(sp2) ~1.32 Å

o more difficult to judge for extended solids, as bond distances can 

vary with packing and oxidation state

 Distances can be calculated from the atomic fractional coordinates

 Bond angles are also important

o for example, you know that a benzene ring 

should be planar with 120° angles



Calculation of bond lengths
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 The location of each atom relative to the origin of the unit cell 

can be described as

o r = x·a + y·b + z·c

 The vector between two atoms is

o ∆r = ∆x·a + ∆y·b + ∆z·c

 The bond length can then be calculated as

o r = (|∆r|2)1/2

 You must take into account symmetry equivalent atoms when 

calculating bonds!



Error estimate on bond lengths
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 From your refinement, you get error estimates on x, y and z

 This information can be used to calculate the errors of the interatomic 
distances

 Use error propagation:

 For example, for two atoms with uncertainties of 0.005 Å in their 
atomic position,
o σ = [0.0052 + 0.0052]1/2 Å

o this treatment assumes no correlation between the atoms
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Looking at the structure
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 The easiest way to figure out whether your results make 
sense is by looking at a structural diagram

 There are many different ways of representing a structure
o ball and stick (PLUTO)
o thermal ellipsoids (ORTEP)
o space filling 
o coordination polyhedra (STRUPLO)

 There are also different styles
o projection
o perspective
o stereo
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Ball and stick representation
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 Very simplified, features can be clearly seen



ORTEP (Oak Ridge Thermal Ellipsoid Plot)
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 Standard representation 

for small molecules

 Orientation and size of 

thermal ellipsoids can be 

interpreted as thermal 

motion, static disorder or 

errors in the model
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Space filling
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 Useful to get an 

idea of how 

densely packed a 

structure is
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When to use which style
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Stereo views
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http://www.pnas.org/content/95/10/5495/F3.large.jpg



Coordination polyhedra
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 Most common 
representation of 
extended solids

 Metals sit at center of 
polyhedra, anions at 
corners

Monoclinic ZrMo2O8

Trigonal ZrMo2O8



Atomic connectivity in extended solids
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 Extended solids do not consist of a molecular moiety that is 
packed within the unit cell

 All you know is the chemical stoichiometry (if you did your 
analysis properly) and the total number of atoms in the unit 
cell (from estimating Z)

 The same metal atom can form a different number of bonds to 
the same anion in different structures
o see the different ZrMo2O8 polymorphs

 You must have some idea of reasonable bond distances to interpret 
the Fourier difference map correctly!

2 0 2 3 - 2 0 2 4



Coordination and bond strength
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 For most metals, there is a correlation between bond 

length and bond strength

 The anions will be more tightly bound the higher the 

oxidation state of the cation is

 The anions will be less tightly bound when more of them 

coordinate the same cation

 Pauling recognized that for certain structures each bond 

can be assigned a “valence” based on its length, and that 

the summation over all bonds from a metal center should 

give its valence

2 0 2 3 - 2 0 2 4



Bond valence sums
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 In 1977, I.D. Brown introduced the bond valence sum concept

 Relationships between bond length and bond valence for given 

pairs of atoms were determined by analysis of databases

 Bond valence: sij = exp((r0 – rij)/B)

o r0 and B are parameters deduced from database analysis

o rij is the experimentally determined interatomic distance

 Atomic valence: Vi = Σ sij
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Using bond valence sums
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 Bond valence sums can be used to check the correctness of your 
crystal structure

 You will often know the average oxidation state of your metals

o from stoichiometry

o crystal color (colorless materials usually contain fully 
oxidized metals)

o other experiments like ESR

 You can use bond valence sums to locate missing atoms

o your calculated metal valence will be too low if you are 
missing an anion

 For this reason, they can be very useful 
aids in structure solution
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Polar materials
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 If the positive and negative dipole moments in a crystal are 

crystallographically separated, it is called a polar material

o results in positive and negative end of the crystal

 Many solids have a polar axis

o PbTiO4, ZnS, …
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Chiral materials

3 5

 Optically pure chiral molecules will crystallize to give a 

chiral solid

o they don’t have a choice, as the mirror image does not exist

 Racemic mixtures of chiral molecules can crystallize as 

chiral solids

o in each crystal, only one enantiomer exists

o you get “enantiomorphous” crystals

 Achiral structural building blocks can assemble to form a 

chiral solid

o quartz consists of achiral SiO4 subunits
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Space groups and chirality
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 Chiral solids can only crystallize in a limited number 
of space groups
o NO mirror planes

o NO inversion centers

o NO glide planes

 Space groups that contain only rotation and screw 
axes are chiral
o any solid crystallizing in such a space group is chiral

 Some space groups are enantiomorphous
o e.g., P41 and P43, P61 and P65, etc.
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Determining absolute structures
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 When you have a chiral solid, which enantiomer do you have?

 When you have a polar material, which way does the polar axis 
point?

 Answering both of these questions would be considered a 
problem of absolute structure

 Determining the absolute structure of a material is challenging

o usually not possible with chemical or spectroscopic methods

 Crystallography is THE most important tool for establishing 
absolute structure!
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Absolute structure and anomalous scattering
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 Anomalous scattering and the resulting breakdown of Friedel’s 
law can be used for determining absolute structure

 When anomalous scattering occurs, the atomic scattering factor 
must be expressed as

o f = f0 + ∆f’ + i∆f”

 This results in a modified structure factor expression

o F(hkl) = A + iB + (∆f’ + i∆f”)(Aa + iBa)

 Inversion of the absolute structure (x,y,z goes to –x,-y,-z) gives

o F(hkl) = A - iB + (∆f’ + i∆f”)(Aa - iBa)

 The magnitudes of these structure factors 
are not the same!
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Absolute structure determination in everyday life
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 You may work with chiral materials on a daily basis, but you are 

unlikely to have access to a tunable radiation source all the time

 For Friedel’s law to break down, data should be collected 

“sufficiently near to an X-ray absorption edge”

o for maximum impact, you want an X-ray energy very close to an 

absorption edge (e.g., a few eV below the edge)

o with high accuracy data, there is still a small effect for compounds 

containing only C, H and O when collecting with Cu Kα
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Other strategies
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 The best way to determine absolute structure is the high accuracy 

measurement of Friedel pairs

 However, there are also other approaches

 Many least squares programs have an absolute structure parameter 

that can be refined

 Flack or Rogers parameters are the most commonly used absolute 

structure parameters

 Hamilton’s R-ratio can also be used
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Hamilton, Flack and Rogers parameters
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 Hamilton’s R ratio makes use of the small differences in I(hkl) and 
I(hkl) that occur even if data are collected not very close to an 
absorption edge

o the ratio of the R-values obtained with the trial structure and 
its mirror image is calculated, showing which enantiomer 
gives the better fit

 Johnson first introduced a variable for the ∆f” term

o method was rediscovered by Rogers, and refined by Flack

 Rogers or Flack parameter: f = f0 + ∆f’ + iη∆f”

o if η approaches +1 or –1, the correct absolute structure 
can be deduced
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