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Outline

= Historical development of synchrotrons

" Insertion devices

= Advantages of synchrotron radiation over “traditional sources”
= Possible applications of synchrotron radiation in research

= Neutron sources and experimental setups
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X-rays and neutrons in comparison

X-rays

Neutrons

Atomic scattering power varies
smoothly with atomic number

Atomic scattering power varies
randomly with atomic number

Atomic scattering power decreases with
increasing scattering angle

Atomic scattering power remains
approximately constant with angle

Mostly insensitive to magnetic
moments

Strong interaction (scattered) with
magnetic moments

High intensity beams

Low intensity beams

Strong absorption, especially by heavier
elements

Weakly absorbed by most materials
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Neutron scattering lengths
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What is a synchrotron?

Linear accelerator
Booster

Ring
— | I
\e_ M
] electron bunches

Synchrotron
Ring
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Synchrotron Radiation

= To keep electrons on a circular path: Constant acceleration

necessary (bending magnets)
= Acceleration of particles produces radiation
= Emission of white radiation in X-ray region

= Emission properties can be modified by the use of

insertion devices like wigglers and undulators

TTTTTTTTTTTTTTT
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Producing Synchrotron Radiation
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The Advanced Photon Source

http://www.aps.anl.gov/About/APS_Overview/ 'lE
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The Advanced Photon Source
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Synchrotrons - historical development

= First generation:

(@)

(@)

Used for high energy physics research on elementary particles

Radiation was only rarely - “parasitically” - used for
spectroscopy or diffraction experiments

Investigation of frog muscle contraction (1967) motivated use
of synchrotron radiation

Unstable/unreliable machines

Spectroscopic/diffraction experiments had different
operational requirements from high energy physics

TTTTTTTTTTTTTTT
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Historical development

= Second generation:
o Built during the 1980's
o Designed for use of the radiation produced
= Many beamlines and hutches with different equipment

= Number of users increased drastically

= Third generation:
o Characterized by high brilliance, mostly achieved with large rings
o Three largest ring facilities:
= European Synchrotron Radiation Facility (Grenoble, 1995, 6 GeV)
= Advanced Photon Source (Argonne, 1996, 7 GeV)
=  Spring-8 (Himeji, 1997, 8 GeV)
o Also, a number of smaller rings with high brilliance (~20

worldwide)
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Recent developments

= X-ray free electron laser (FEL)
o Linac Coherent Light Source at SLAC

=  World’s most powerful X-ray laser
= 2 mile long linear accelerator

= 100 fs pulses, 8 orders of magnitude brighter than
synchrotrons!

=  “Diffract and destroy”
=  First beam in 2009

o European XFEL at DESY
SACLA at Riken Harima Institute
o ..and about a handful more

=  Fourth generation: Characterized by even
higher brilliance

o Achieved by using multi-bend achromat
magnets

o First facility: MAX IV in Sweden (2015);
APS-U upgrade starting soon

https://www.aps.anl.gov/sites/www.aps.anl.gov/files/APS-Uploads/ASD/2019-
03KJKFest/Presentations/Hettel%20%20The%20Evolution%200f%204th%20Generation%20Storage
%20Ring%20Light%20Sources.pdf
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Synchrotron Radiation Properties

" |ntensity

o Number of photons

= Flux

o Number of photons per second (ph/s)

= Brilliance

o Flux per unit area (ph/s/mm?)

= Brightness

o ph/s/mmz2/mrad?

Takes into account divergence of beam (synchrotrons have low divergence)

TTTTTTTTTTTTTTT
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Energy spectrum of synchrotron radiation
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http://atap.lbl.gov/wp-content/uploads/sites/22/2016/10/ALSUcoherentflux1000x779y.png
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Wigglers and Undulators

WIGGLER-UNDULATOR COMPARISON
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= Wigglers and undulators “wiggle” the electron path back
and forth between multipole magnets

o Emission of radiation whenever the direction 1s changed
o Wigglers: Large pole spacing, incoherent interference

o Undulators: Short spacing, coherent interference
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What’s special about synchrotron radiation?

= High photon flux
= Plane polarized
= Intrinsically collimated beam

= White radiation = energy (wavelength) can be changed
o Selection of “suitable” wavelength

o Multiple experiments at different wavelengths are
possible

o White radiation experiments

o Spectroscopy (changing the wavelength continuously)

=  Well defined time structure

TTTTTTTTTTTTTTT
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Beam collimation
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Winick, Doniach; “Synchrotron Radiation Research”
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Possible experiments

= Crystallography
o powder
o single crystal: down to1 m possible in some cases
o macromolecules
o MAD - recovery of phase information

= Spectroscopy
o absorption
o X-ray emission
o EXAFS
o XANES

TTTTTTTTTTTTTTT
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Possible experiments - cont’d

High pressure experiments

o In situ observation by diffraction

Imaging

X-ray reflectivity

Scattering

O

©)
©)
@)

small angle
inelastic
magnetic
surface

Time resolved x-ray studies
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Energy and angle dispersive diffraction

* An X-ray diffraction pattern is a measurement of X-ray
intensity versus d-spacing

o d-spacing, scattering angle and | are related by Bragg's law
e 2dsinB=A

Ettringite simulations ~ Hist

cccccccccccccccccccccccc
||||||||||||

Ettringite simuld

Detector
Incoming
X-rays
Energy dispersive diffraction Angle dispersive diffraction
Fix 2q and vary | Fix | and vary 2q
Quick experiment with fixed sampling volume, High resolution but slow and sampling
but low resolution volume varies
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Powder diffraction with high energy X-rays

= Can use complex sample environment due to penetrating nature

of X-rays

= Can map out phase and stress distributions inside parts due to

penetrating power
= Systematic errors due to absorption and extinction are eliminated

= Can work at high energy absorption edges in resonant scattering

experiments

= Can make measurements to very high Q

o provides a lot of structural detail

TTTTTTTTTTTTTTT
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Anomalous diffraction: The X-ray scattering factor

The elastic scattering is given by,
F(E,Q)=1(Q)+1'(E,Q+7F"(E Q)

For a spherical atom,

f(Q) = 47zJO

f’ and f "' undergo drastic changes close to the absorption
edges

“ronNd @ .

TTTTTTTTTTTTTTT
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Absorption and anomalous scattering

= " “mirrors” the absorption
coefficient
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High pressure in situ diffraction studies
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Even higher pressures: Diamond anvil cells
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Data collection and processing
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Refinements - structural model
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Refinements - Le Bail or Pawley Fits

Intensity (a.u.)
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X-ray Absorption Spectroscopy

= Based on excitation of core electrons by photons

= Element specific

= Usually carried out for edge energies 3 < E < 35 keV

Z = 74, TUNGSTEN
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Experimental setup

X-ray source

Double crystal Sample
monochromator

= 10n chambers

-I, = incident intensity

-1, = transmitted intensity

-1, = fluorescence intensity

TTTTTTTTTTTTTTT
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XANES experiments

= X-ray Absorption Near Edge Spectroscopy

= Region starting below the absorption edge up to ~¥30-40 eV
above the edge

=  Contains information about the absorber

o Oxidation state

o Symmetry of coordination environment

=  Works for very low concentrations

=  Conclusions are often drawn by comparison with model
compounds that possess known, distinct environments

TTTTTTTTTTTTTTT
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The EXAFS experiment

Extended X-ray Absorption Fine Structure

Primary
electron

\ /
Photon
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Information from EXAFS experiments

= Quantitative information can be extracted from the
oscillations above the absorption edge

o Use model compound to fix some fundamental parameters

= Contains information about the surrounding atoms

o Number of nearest neighbors
o Type of neighboring atoms
o Distance from absorber

= Information out to ~4 A distance can be extracted
from high quality data

o Fit several shells of neighboring atoms

TTTTTTTTTTTTTTT
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EXAFS

= Element specific

= Can be applied to any kind of sample

o Crystalline or amorphous, solids, liquids, gases

= EXAFS equations:

o Absorption: w-t= m% o op=p,(1-y)

o Oscillations:

X(k) Z J](k)exp( f;r{zg _Zr/x(k))om(Zkr +(Pj(k))

J

k = \/ Zm(E _ EO) photoelectron wave vector
hZ

TTTTTTTTTTTTTTT
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absorption [a.u.]

1 (K)*k 2

An example of EXAFS data processing
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Partial solution of ZrW,0,-xH,0
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2023-2024

Highly disordered structure, but partial
solution suggests increase in tungsten

coordination number.

37
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XANES measurements on the hydrate
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ZrW,0, prepared by NHSG chemistry
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Phase evolution of ZrW 2O8 prepared via NHSG
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EXAFS study on ZrWW, O,

= Goal 1: Investigate the changes in local metal
environments during heat treatment of amorphous gels
and compare them to the local environments of
crystalline phases
o Isthe gel structure responsible for the crystallization of

trigonal Zr'W,04?

= @Goal 2: Compare the local metal environments in cubic

and trigonal ZrW,O,

o How different are they? Could seeding favor the desired
phase?

TTTTTTTTTTTTTTT
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E

XAFS samples

Sample Synthesis Procedure W L -edge Zr K-edge
Ak(A) Ak(AT)

(1) ZrO, Commercial monoclinic N/A 1.0-1643
(2) ZrO, SG 600°C, crystalline N/A 1.0-16.46
(3) ZrO, SG 200 °C, 8% organic, amorphous N/A 1.0-16.45
(4) ZrO, SG 110 °C, 35% organic, amorphous N/A 1.0-16.0
(5) WO, Commercial monoclinic 1.0-13.62 N/A

(6) WO; SG 600°C, crystalline 1.0-15.56 N/A

(7) WO;  SG 350 C, 4% organic, poorly crystalline 1.0 - 15.56 N/A

(8) WO; SG 110 °C, 12% organic, amorphous 1.0-15.56 N/A

(9) ZrW,0O4 SG 1200 °C, crystalline cubic 1.0-16.00 2.0-16.25
(10) ZrW,O4 SG 740 °C, crystalline trigonal 1.0 - 16.00 2.0-16.10
(11) ZrW,0O4 SG 600 °C, 0% organic, amorphous 1.0-16.00 2.0-15.00
(12) ZrtW,0O4 SG 110 °C, 30% organic, amorphous 1.0 - 16.00 2.0-15.00

SG = Non-Hydrolytic Sol-Gel, N/A = Not Applicable

2023-2024
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Absorption (a.u.)

WL, -edge data
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r(K).K

WL, ,-edge data analysis
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Fits using a 3+1 coordination model:

Only good for crystalline ZrW,0O,; samples

2023-2024

Sample R(A) o%(A?) N
(9) ZrW,0, cubic W-01 1.72 0.0019 1
W-02 1.80 0.0019 3
(10) ZrW,0O, trigonal W-01 1.73 0.0015 1
W-02 1.80 0.0015 3
(11) ZrW,0Oq, 600 °C, am. W-O1 1.75 0.0037 1
W-02 1.80 0.0037 3
(12) ZrW,0,, 110 °C, am. W-O1 1.75 0.0066 1
W-02 1.79 0.0066 3

TTTTTTTTTTTTTTT
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WL, ,-edge data analysis
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Fits using an octahedral coordination model
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Neutron sources

Reactor sources

*Neutrons are produced by nuclear
chain reaction

*Neutrons must be slowed down by
moderator for use in diffraction

*Neutron wavelength distribution 1s
thermal equilibrium distribution
from moderator

*Monochromator needed => uses
only small portions of the produced
neutrons

1090 a)

i

01 02
0 A [nm)

2023-2024

10°

-

0-3

Spallation sources

*Neutrons are produced by
bombarding a metal target with
protons

Different wavelength distribution
from reactor

*High peak flux, low average flux

*Due to time structure, all neutrons
can be used

02

A (nm)
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Nuclear Reactors

J neutron

fission
@ product

neutron

-J

fission
product

J neutron

TTTTTTTTTTTTTTT
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Reactor sources

= Experimental setup very similar to lab

X-ray diffraction

= Large samples needed

o low intensity beams

Intensity

=  Powder data: Peak shape is often

simple and thus easy to model

= No form factor fall-off gives good

quality data at small d-spacings

o butd,;, Is often similar to a lab
X-ray experiment

2023-2024

Typical monochromator cut
at~1.5 A for T=300K

I
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Spallation Sources
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Spallation source - TOF experiments

2023-2024 49

Neutrons are particles with mass, so wavelength and speed are

correlated (de Broglie)

with v=(L+L,)/t

o mL+L)N
- h

> | =

SO

Data are plotted as a function of t (TOF)

Originally: Detectors are combined in “banks” at fixed angles

o Accessible d-spacing range depends on angle of bank
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Approximate flux
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Neutron flux evolution
(Courtesy of Simon Billinge)

Reactor sources

Reactor flux development 1950-2000
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SEPD — Special Environment Powder Diffractometer

Neutron
Source

2023-2024

Detectors
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Modern detector setups - GEM

GEM
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Modern detector setups - POWGEN

TTTTTTTTTTTTTTT
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