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Concepts versus reality
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 “Reflection from lattice planes” is just a concept that helps us to visualize 
what is happening in a diffraction experiment

 In reality, X-rays are scattered by the electrons in the atoms

o X-ray wavelength is similar to size of electron cloud

o a periodic crystal corresponds to a periodic variation in electron density

o the scattering event leads to a phase change of 180°

 Neutrons are scattered by nuclei

o nuclei are much smaller than the neutron wavelength

o neutrons can also interact with magnetic moments in a material  
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Phase change on scattering
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“Crystal Structure Analysis for Chemists 
and Biologists”, Glusker, Lewis and Rossi, 

VCH, 1994. 



What do we actually measure?
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 We measure the intensity distribution of scattered 

radiation as a function of scattering angle

o for single crystals, we get 3D resolution

o for powder experiments, all information is compressed into 1D

 The intensity distribution of scattered radiation is a result 

of the electron density distribution inside the crystal

o the electron density distribution is the same in each unit cell

• ⇒ periodic array of electron density
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Reciprocal space
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 We do not see the periodic electron density directly during a 
diffraction experiment
o we only observe the intensity distribution of X-ray scattering 

from the crystal(s)

 The diffraction intensity is correlated to the electron density in 
the crystal by a Fourier transform
o often referred to as direct space and reciprocal space 

 This means that we sample reciprocal space with our 
diffraction experiments
o we can define a reciprocal lattice that corresponds to the direct 

(crystal) lattice
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Real and reciprocal space
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“Crystal Structure Analysis for Chemists and 
Biologists”, Glusker, Lewis and Rossi, VCH, 1994. 



The reciprocal lattice
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 The reciprocal lattice has the same symmetry as the crystal lattice

 It can be derived from the crystal lattice graphically
o draw lattice planes
o pick an origin and draw normals to the lattice planes
o mark points along the normals spaced d*(hkl) from the origin, where d*(hkl) 

= 1/d(hkl)

 The reciprocal lattice constants a*, b* and c* are defined so that 
they correspond to d*(100), d*(010) and d*(001)
o note that the direction of a*, b* and c* will only coincide with that 

of a, b and c if the crystal lattice has α = β = γ = 90°
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The reciprocal lattice – graphical construction
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“Structure Determination by X-ray 
Crystallography”, Ladd and Palmer, Plenum, 1994. 



Reciprocal lattice constants
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 The mathematical definition of the reciprocal lattice constants is

 Note that the cross product returns a vector, while the dot 
product gives a scalar!
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Scattering from a material
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 Assumption: Incoming beam is a plane wave, 
phase change on scattering is identical for all rays

 According to vector algebra:
o ∆l1= -r · s0

o ∆l2= -r · s
o total path difference: ∆l = ∆l1 - ∆l2 = r · (s – s0)

2 0 2 3 - 2 0 2 4

s0: Unit vector of incoming beam

s: Unit vector of scattered beamr
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Scattering from a material (2)
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 Define: Scattering vector 
S = s – s0

 The phase difference φ is given by 

 The change in scattering amplitude, dA(s), is given by the phase 
difference and the electron density in the volume element dVr
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The relationship between A and ρ
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 The scattering amplitude, A(s), and the electron density, ρ(r), are 
correlated by a Fourier transform

 Problem: We cannot measure A(s), but only the intensity I, which is 
given by

 Note that these equations are valid for any material, we have not yet 
made any assumptions about periodicity!
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Scattering from crystals
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 To describe the electron density distribution in a crystal, we 
only need to describe it in one unit cell:

 Over all space, this gives us
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A crystal’s interference function
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 The summation part in the formula for the scattering amplitude describes a 
crystal’s interference function:

 This will lead to reinforcement for
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A crystal’s interference function (2)
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 Each of these conditions describes a family of planes spaced 1/a 
(1/b, 1/c) as a solution for S
o for a one-dimensional array of scatterers, the solutions are planes

o for a two-dimensional array, the solutions are lines

o for a three-dimensional array, the solution consists of points: The 
reciprocal lattice points
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Ray Young, X-ray Monograph



The Ewald sphere
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 Remember that we defined

S = s – s0

where s and s0 were unit vectors

 We can choose a frame of reference 
in which s0 is fixed, and the end point 
of the vector s0/λ is the origin of 
reciprocal space

 This allows us to define an Ewald 
sphere, also known as sphere of 
reflection, with radius 1/λ around 
the crystal
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Ray Young, X-ray Monograph



Fulfilling four conditions
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 The Ewald construction is also 
known as wavelength condition

 The three Laue conditions and the 
wavelength condition must be 
fulfilled simultaneously for 
diffraction to occur

 This means that a reciprocal lattice 
point must lie on the Ewald sphere 
for diffraction to occur

 Rotation of crystal is equivalent to 
rotation of reciprocal lattice

“Elements of X-ray Diffraction”, Cullity and Stock, Prentice Hall 
College Div., 3rd edition, 2001. 



Bragg’s law in reciprocal space
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 If we define the distance of a lattice point from the origin of 
reciprocal space as d*, we get

 We can also show that

 It follows that
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Calculating d-spacings
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 The distance of reciprocal lattice points from the origin of the reciprocal 
lattice is given by

o h, k and l are the Miller indices

 By definition, d can be calculated from d* by

 Calculation is only straightforward for orthogonal crystal lattices
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d-spacing formulae
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“Structure Determination by X-ray 
Crystallography”, Ladd and Palmer, Plenum, 1994. 
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Observations from single crystals and powders
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 For a single crystal, there is one orientation in real space, 
resulting in one orientation of the reciprocal lattice
o reciprocal lattice points are resolved and will result in diffraction 

intensity when they touch the Ewald sphere

 A powder sample consists of many crystallites with random 
orientations
o we get many overlapping reciprocal lattices, resulting in a “sphere” 

of reciprocal lattice points that fulfill the Bragg condition at a 
given 2θ

o the sphere will intersect the Ewald sphere in a circle

o we will observe “powder rings”
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Powder diffraction rings
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 If we assume an infinite number of randomly oriented 
crystallites, every point Pn at distance d* from the origin 
of reciprocal space fulfills the Laue conditions

“Elements of X-ray 
Diffraction”, Cullity and 

Stock, Prentice Hall College 
Div., 3rd edition, 2001. 
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