Handout 6: Structure Factors

How to get more than unit cell sizes from your diffraction data

Chem 6850/8850 X-ray Crystallography Department of Chemistry & Biochemistry

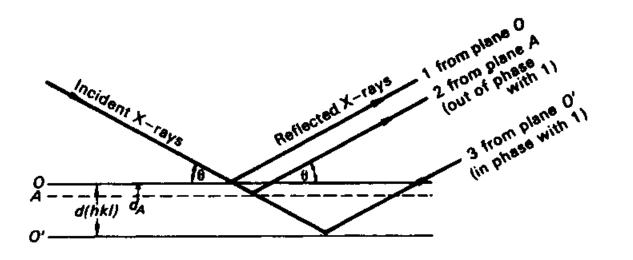
cora.lind@utoledo.edu

Yet again... expanding convenient concepts

- First concept introduced: Reflection from lattice planes
 - o facilitates derivation of Bragg's law
 - o explains the location of spots on the observed diffraction pattern
- Second concept introduced: Scattering from atoms, all the electron density was assumed to be concentrated in a "lattice point" (e.g., origin of the unit cell)
 - o gave the correct locations for spots in the diffraction pattern
- But what about atoms that are located "between lattice planes"?
 - o any atom can scatter an X-ray that hits it
 - what does this imply for the overall scattering amplitude?

Atoms "between lattice planes"

- "Atoms between lattice planes" will always scatter X-rays so that the resulting wave is partially out of phase with X-rays scattered from the "lattice planes"
 - o the "lattice planes" can be envisioned as atoms located in the plane



"Structure Determination by X-ray Crystallography", Ladd and Palmer, Plenum, 1994.

Description of a plane

- Point P can be described by the vector **p**, which is perpendicular to the plane LMN, or by the coordinates (X,Y,Z)
 - the intercept equation of the plane is given by

 $X/a_p + Y/b_p + Z/c_p = 1$

o this can be rearranged to

 $X \cos \chi + Y \cos \psi + Z \cos \omega = p$

describes family of parallel planes
 that are located at distance |**p**| from 0

$$a_p = p/\cos \chi, \quad b_p = p/\cos \psi, \quad c_p = p/\cos \omega$$
 (4.2)

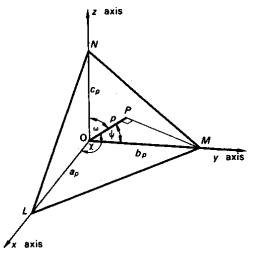


FIGURE 4.2. Plane LMN referred to general (triclinic) axes; OP of length p is the perpendicular from the origin to the plane.

"Structure Determination by X-ray Crystallography", Ladd and Palmer, Plenum, 1994.

Path difference

$$X\cos\chi + Y\cos\psi + Z\cos\omega = p$$

For plane O':
$$p = d_{hkl}$$
; $a_p = a/h$; $b_p = b/k$; $c_p = c/l$
 $\cos \chi = d_{hkl}/(a/h)$; $\cos \psi = d_{hkl}/(b/k)$; $\cos \omega = d_{hkl}/(c/l)$

For plane A:

$$p_{A} = d_{A}; \text{ atom at } (X_{A}, Y_{A}, Z_{A})$$

$$\Rightarrow d_{A} = X_{A} \cdot \frac{d_{hkl}}{a/h} + Y_{A} \cdot \frac{d_{hkl}}{b/k} + Z_{A} \cdot \frac{d_{hkl}}{c/l}$$

$$d_{A} = (hx_{A} + ky_{A} + lz_{A})d_{hkl} \qquad \text{using fractional coordinates}$$

According to Bragg's law, the path difference between O and A is

$$\delta_{A} = 2d_{A}\sin\theta_{hkl} = 2d_{hkl}\sin\theta_{hkl}(hx_{A} + ky_{A} + lz_{A})$$

$$\Rightarrow \delta_{A} = \lambda(hx_{A} + ky_{A} + lz_{A})$$

2 0 2 3 - 2 0 2 4

5

Using wave equations instead

We can describe a wave as

 $W_0 = f \cdot \cos(2\pi X/\lambda)$ or $W_0 = f \cdot \cos(\omega t)$

where W_0 is the transverse displacement of a wave moving in the X direction, the maximum amplitude is f at t=0 and X=0

For other waves with a maximum at $t=t_n$ and $X=X_n$, we can write

 $W_{\rm n} = f_{\rm n} \cdot \cos(2\pi X/\lambda - \phi_{\rm n})$ where $\phi_{\rm n} = 2\pi X_{\rm n}/\lambda$

Two arbitrary waves of same frequency can then be represented as

$$W_1 = f_1 \cdot \cos(\omega t - \phi_1) = f_1 \cdot [\cos(\omega t) \cos(\phi_1) + \sin(\omega t) \sin(\phi_1)]$$
$$W_2 = f_2 \cdot \cos(\omega t - \phi_2) = f_2 \cdot [\cos(\omega t) \cos(\phi_2) + \sin(\omega t) \sin(\phi_2)]$$

Sum: $W = W_1 + W_2 = \cos(\omega t) \cdot (f_1 \cdot \cos(\phi_1) + f_2 \cdot \cos(\phi_2)) + \sin(\omega t) \cdot (f_1 \cdot \sin(\phi_1) + f_2 \cdot \sin(\phi_2))$

2023-2024

Wave equations continued

We know that we can write any wave as

$$W = F\cos(\omega t - \phi) = F[\cos(\omega t)\cos(\phi) + \sin(\omega t)\sin(\phi)]$$

Comparison with the equations on the last slide gives

$$F\cos(\phi) = f_1 \cos(\phi_1) + f_2 \cos(\phi_2)$$
$$F\sin(\phi) = f_1 \sin(\phi_1) + f_2 \sin(\phi_2)$$

F can be calculated as

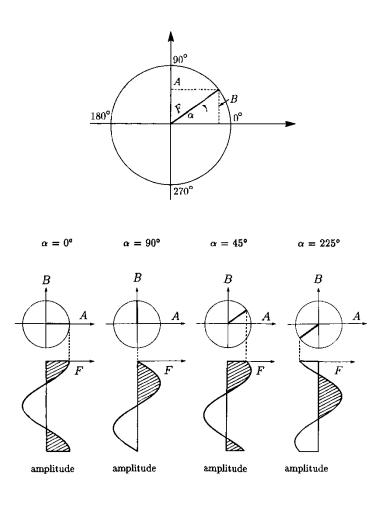
 $F = [(f_1 \cos(\phi_1) + f_2 \cos(\phi_2))^2 + (f_1 \sin(\phi_1) + f_2 \sin(\phi_2))^2]^{1/2}$

2 0 2 3 - 2 0 2 4

7

Argand diagrams

- Waves can be represented as vectors in an Argand diagram
 - represented with real and imaginary components
 - allows for straightforward wave addition
 - For any given wave, we can write
 F = |F|·(cos(αt) + i·sin(αt)) = |F|·e^{iαt}
 (compare to slide 12 of handout 4!)

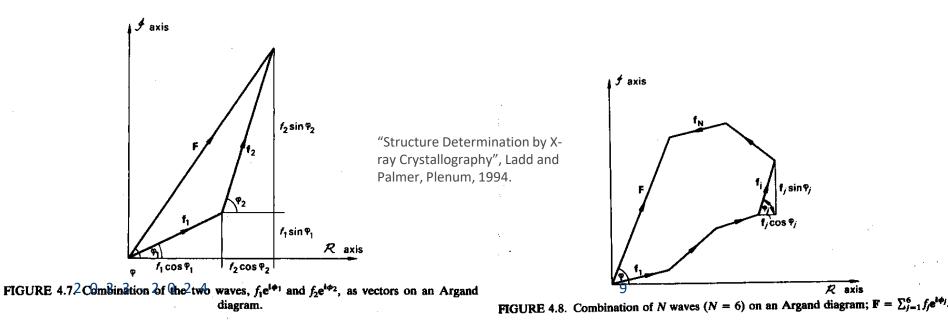


"Crystal Structure Analysis for Chemists and Biologists", Glusker, Lewis and Rossi, VCH, 1994.

Wave addition using Argand diagrams

 Any number of waves can be added using an Argand diagram

• For N waves,
$$F \cos(\varphi) = \sum_{j=1}^{N} f_j \cos(\varphi_j);$$
 $F \sin(\varphi) = \sum_{j=1}^{N} f_j \sin(\varphi_j)$
• Alternatively, we can write $\mathbf{F} = \sum_{j=1}^{N} f_j \mathbf{e}^{i\varphi_j} = |F| \mathbf{e}^{i\varphi}$



Phase difference

 From our treatment of path differences of waves scattered by arbitrary atoms, we obtained

 $\delta_A = \lambda (hx_A + ky_A + lz_A)$

• The corresponding phase difference can be written as

$$\varphi_j = (2\pi/\lambda)\delta_j = 2\pi(hx_j + ky_j + lz_j)$$

 This implies that our expression for F depends on the diffraction direction as described by the Miller indices *hkl* (or the diffraction angle, if you prefer)

Structure factors

2

- F should be more properly written as F(hkl) or F_{hkl} to express its dependence on the diffraction angle
- There will be a unique F(hkl) corresponding to each reflection in a diffraction pattern
 - note and remember! that all atoms in a crystal contribute to every F(hkl)!
- **F**(*hkl*) is called the *structure factor* for the (*hkl*) reflection
- Can be broken down in its real and imaginary components

 $\mathbf{F}(hkl) = A(hkl) + iB(hkl)$

where

$$A(hkl) = \sum_{j=1}^{N} f_j \cos(2\pi(hx_j + ky_j + lz_j)) \qquad B(hkl) = \sum_{j=1}^{N} f_j \sin(2\pi(hx_j + ky_j + lz_j))$$

$$0 \ge 3 - 2 \ 0 \ge 4 \qquad 1 \ 1$$

Atomic scattering factors

- The individual atomic components, f_j, are called *atomic* scattering factors
 - depend on nature of atom, direction of scattering, and X-ray wavelength
 - provide a measure of how efficiently an atom scatters X-rays compared to an electron
 - o usually written as f_{j} although they should be written as $f_{j,\theta,\lambda}$
 - o listed as a function of $\sin(\theta)/\lambda$ for each atom in the International Tables
 - maximum value of f_j is Z_j the number of electrons of the j^{th} atom

Intensity and structure factors

 We cannot measure structure factors, instead, we will measure the intensity of diffracted beams

 $I(hkl) \propto \mathbf{F}(hkl)\mathbf{F} * (hkl)$

 $\mathbf{F} * (hkl) = |F(hkl)|\mathbf{e}^{-i\varphi}$

```
|F(hkl)|^2 = A^2(hkl) + B^2(hkl)
```

• The phase is given by

 $\tan(\varphi) = B(hkl)/A(hkl)$

Problem: We lose the phase information when measuring intensities!

Factors between I and F

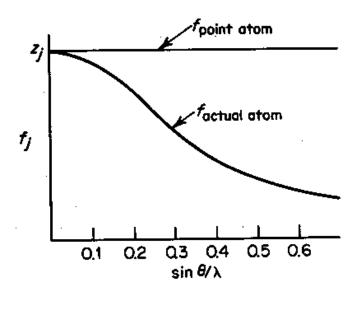
- There are several factors between *I* and *F* that will change the measured intensity:
 - o thermal vibration of the atoms: $\exp[-B_i(\sin^2(\theta)/\lambda^2]]$
 - Lorentz factor, for normal 4 circle diffractometers: $1/\sin(2\theta)$
 - $\circ~$ absorption: e^-\mu t, where μ is the linear absorption coefficient and t the thickness of the specimen
 - o polarization: $p = (1 + \cos^2(2\theta))/2$
 - o scale factor

Thermal vibration

- Thermal vibration "smears out" the electron cloud surrounding an atom
 - o we see time average over all

configurations

- displacement of atoms leads to slight phase difference for atoms in neighboring unit cells
- o $f = f_0 \cdot \exp[-B_j(\sin^2(\theta)/\lambda^2]]$
- $\circ \quad B_j = 8\pi^2 \langle u^2 \rangle$
- o $\langle u^2 \rangle$ is the mean square amplitude of displacement



Systematic absences

- Some reflections will be systematically absent from your diffraction pattern
- These absences are a result of
 - o lattice centering
 - o glide planes
 - o screw axes
- Note that simple rotations and mirror planes to not give systematic absences!
- Space groups can be assigned based on systematic absences & Laue symmetry

Systematic absences (2)

TABLE 4.1 .	Limiting	Conditions	for	Unit-Cell	Type
--------------------	----------	------------	-----	-----------	------

Unit-cell type	Limiting conditions	Translations associated with the unit-cell type
P	None	None
Α	hkl: k+l=2n	b/2 + c/2
B	hkl: h+l=2n	a/2 + c/2
С	hkl: h + k = 2n	a/2 + b/2
I	hkl: h+k+l=2n	a/2 + b/2 + c/2
	$\int hkl: h + k = 2n$	$\int a/2 + b/2$
F	$\begin{cases} hkl: h + k = 2n \\ hkl: k + l = 2n \\ hkl: (h + l = 2n)^a \end{cases}$	$\begin{cases} a/2 + b/2 \\ b/2 + c/2 \\ a/2 + c/2 \end{cases}$
	$hkl: (h+l=2n)^a$	a/2 + c/2
	hkl: -h + k + l = 3n (obv)	$\begin{cases} a/3 + 2b/3 + 2c/3 \\ 2a/3 + b/3 + c/3 \end{cases}$
R _{hex} ^b	or	
	hkl: h - k + l = 3n (rev)	$\begin{cases} a/3 + 2b/3 + c/3 \\ 2a/3 + b/3 + 2c/3 \end{cases}$
~~~	$n_{KL}, n = K + I = 3n (1ev)$	(2a/3 + b/3 + 2c/3)

" This condition is not independent of the other two, as may be shown easily.

^b See page 70 and Table 2.3.

Glide plane	Orientation	Limiti	ing condition	Translation component
a	<i>⊥b</i>	h0l:	h = 2n	a/2
a	$\perp c$	hk0:	h = 2n	a/2
b	$\perp a$	0kl:	k = 2n	b/2
b	⊥c	hk0:	k = 2n	b/2
c	⊥a	0kl:	l = 2n	c/2
с	⊥b	h0l:	l=2n	c/2
n	$\perp a$	0kl:	k+l=2n	b/2 + c/2
n	⊥ <i>b</i>	h01:	h+l=2n	a/2 + c/2
0 <u>2 3 ⁿ 2 0</u>			h + k = 2n	a/2 + b/2

TABLE 4.3. Limiting Conditions for Glide Planes

TABLE 4.2. Limiting Conditions for Screw Axes

Screw axis	Orientation	Limiting conditon	Translation component
2,	a	h00:  h = 2n	a/2
2	ļЬ	0k0:  k = 2n	· b/2
2	∥c	00l: l = 2n	c/2
2 ₁ 2 ₁ 2 ₁ 3 ₁ or 3 ₂	∦c	000l: l = 3n	c/3, 2c/3
4, or 4,	c	00l: l = 4n	c/4, 3c/4
4 ₂	_   c	00l: l = 2n	2c/4(c/2)
$6_1$ or $6_5$	c	000l: l = 6n	c/6, 5c/6
6 ₂ or 6 ₄	".   c	0001: $l = 3n$	2c/6, 4c/6(c/3, 2c/3)
63	Îc	000l: l = 2n	3c/6(c/2)

1 7

"Structure Determination by X-ray Crystallography", Ladd and Palmer, Plenum, 1994.

