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Before you start…
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 You need to have at least a pretty good idea of your unit cell 
contents
o needed for data scaling
o also necessary to search for/place atoms

 Elemental analysis gives stoichiometry
o can be “traditional” elemental analysis
o for organics, could be deduced from spectroscopic data

 Once we know the stoichiometry, we need to estimate Z
o symmetry considerations
o estimate based on average volume per atom
o based on density measurement

2 0 2 3 - 2 0 2 4



The challenge… and the problem
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 We want:

o electron density distribution of our crystals

o can be determined by Fourier synthesis of a large number of 
Fhkl values

 We have:

o only |Fhkl| can be obtained from intensity measurements

o the phases are unknown

 We need to recover the lost phase information if we want to 
solve a crystal structure

o often referred to as “the phase problem”
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Recovering the phase information
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 If there were no constraints on the electron density, trying to 

estimate what the lost phases are would be a hopeless 

endeavor

 Luckily, we know a few conditions that must be fulfilled:

o the electron density must be positive at all points

o the electron density should occur in “balls” – the atoms

o atoms must be placed at least a minimum distance apart

 With this knowledge, it is often possible to recover the missing 

phase values
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Constraints on the electron density
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“Crystal Structure Analysis for 
Chemists and Biologists”, Glusker, 
Lewis and Rossi, VCH, 1994. 



Possible phase choices
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 For a centrosymmetric structure, the phase angle can only be 0 or 180°

o results in 2N possible sets of phases for N F’s

o only one set gives the right answer!

 For a non-centrosymmetric structure, the phase angle can take any 
value between 0 and 360°

o in many cases, considering 90° increments works okay

o still leaves 4N sets of possible phases for N F’s

 We either need plenty of time and huge computers, or we need to use 
some more sophisticated methods of guessing!
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Phase choice in a centrosymmetric crystal
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“Crystal Structure Analysis for 
Chemists and Biologists”, Glusker, 
Lewis and Rossi, VCH, 1994. 



Electron density equations
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 We already established that

 This can be rewritten as

 Ultimately, the electron density must be real (physical quantity)!
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Friedel’s law
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 Under normal circumstances, any X-ray diffraction 

pattern will be centrosymmetric, regardless of 

crystal class

 This is known as Friedel’s law, which is often 

written as

 Remember that

 This leads to 
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Electron density maps

1 0

 Electron density maps are most 
commonly drawn as contour maps 
where the lines represent traces of 
equal electron density
o sometimes drawn as projections

o often drawn as cross sections so 
that 3D space can be covered

o the higher the peak, the more 
electrons the atom has

o this is what you will be analyzing 
during a single crystal analysis… 
but how do we get it?

2 0 2 3 - 2 0 2 4

“Structure Determination by X-ray 
Crystallography”, Ladd and Palmer, 
Plenum, 1994. 



The Patterson function

1 1

 The Fourier transform relationship between crystal and 
diffraction space was already recognized in 1915, but the 
lack of computing facilities combined with the phase 
problem made extensive Fourier calculations unpopular

 In 1934, Patterson introduced a new Fourier series which 
could be calculated directly from experimental data 
o lack of phases means that this series does not give atomic 

positions directly

o instead, interatomic distances can be seen in the map
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The Patterson function
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 The series is a convolution of two electron density functions

 For one dimension:

 Derived from:
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A 1D example
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 A Patterson map will always be 
centrosymmetric, regardless of crystal 
symmetry!
o this is very different from electron density 

maps, which will reflect the crystal 
symmetry precisely

 There will be N2 peaks in a Patterson map 
for N atoms

 Peak heights are proportional to Z·Z’, so 
heavy atoms stand out
o Z, Z’ refer to atomic number!

 Highest peak is always at origin

“Structure Determination by X-ray 
Crystallography”, Ladd and Palmer, 
Plenum, 1994. 



2D examples

1 42 0 2 3 - 2 0 2 4

“Structure Determination by X-ray 
Crystallography”, Ladd and Palmer, 
Plenum, 1994. “Crystal Structure Analysis for 

Chemists and Biologists”, Glusker, 
Lewis and Rossi, VCH, 1994. 



E-values
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 Many calculations during structure solution processes are carried out 
using normalized structure factors (E-values)

 Removes thermal motion and form factor fall off

o point atom behavior

 |E(hkl)| = |F(hkl)| / ε[Σfj
2(hkl)]1/2

o where fj = fj0exp[-Bj(sin2θ/λ2)]

“Crystal Structure Analysis for 
Chemists and Biologists”, Glusker, 
Lewis and Rossi, VCH, 1994. 



Different types of Patterson maps
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 E-values are frequently used to emphasize features in the map

 |E|2 and |E2-1| maps are common

 |E|2 gives super sharpened maps

 |E2-1| gives maps without origin peak

 Over-sharpening can result in spurious peaks from truncation errors
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Effects of sharpening and origin removal
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Harker lines and planes
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 Peaks in Patterson maps often concentrate along lines 
or on planes

 These Harker lines and planes can be used to determine 
the space group symmetry 

o lines and planes arise from symmetry equivalent atoms
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Harker lines
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 Example: Space group P m

o x, y, z and x, -y, z are symmetry equivalent

• there will be peaks at 0, 2y, 0 in the Patterson

• along the Harker line 0, v, 0

 Example: Space group P c 

o x, y, z and x, -y, z+1/2 are symmetry equivalent

• Patterson peaks will occur at 0, 2y, 1/2

• along the Harker line 0, v, 1/2

2 0 2 3 - 2 0 2 4



Harker planes

2 02 0 2 3 - 2 0 2 4

 Example: Space group P 21

o x, y, z and -x, y+1/2, -z are symmetry equivalent

• peaks at 2x, 1/2, 2z in the Patterson map

• on the Harker plane u, 1/2, w

 Example: Space group P 2 

o x, y, z and -x, y, -z are symmetry equivalent

• Patterson peaks will occur at 2x, 0, 2z

• on the Harker plane u, 0, w



Using Patterson maps
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 Patterson maps are usually used for heavy atom location

o heavy atoms stick out

 After a heavy atom is located, phases can be estimated for each 

reflection from its x, y, z coordinates 

o assumption: Heavy atom dominates scattering

o use phases to calculate a density map and look for residual 

peaks to locate lighter atoms

 Does not work well for complicated structures, but is a common 

approach for small molecules (especially metal oxides etc.)



Locating more atoms

2 22 0 2 3 - 2 0 2 4

 After locating some initial atoms, Fourier difference maps can 

be used to find missing atoms

o this is almost always required for structure completion, 

regardless of method used

o all that differs between methods is how the initial atoms 

are located

 Often referred to as |Fo| - |Fc| map 



Fobs and Fcalc maps
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 Fobs maps are calculated using experimental |F| together with 
phases calculated from some structural model
o can show peaks that do not correspond to atoms in the 

current model

o allows location of missing atoms

 Fcalc maps are constructed from phases and amplitudes that are 
calculated from a structural model
o map only has peaks corresponding to atom positions in the 

model used for calculation

o not very informative
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Difference maps

2 4

 |Fobs| - |Fcalc| (or |Fo| - |Fc|)

 Measured and calculated F’s are combined with 

calculated phases

 The difference map emphasizes incorrect features of 

the model used

o peaks indicate missing atoms

o valleys correspond to incorrectly placed atoms

2 0 2 3 - 2 0 2 4



Map resolution

2 52 0 2 3 - 2 0 2 4

 A complete Fourier synthesis would involve all F(hkl) values 

(summation from -∞ to ∞)

 In reality, only a finite amount of data is available

 Neglecting high resolution data (e.g., F(hkl) with small d-spacings) has 

two effects:

o structural detail cannot be seen

o unwanted ripples in the map can arise due to termination errors



Map resolution – an example
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“Crystal Structure Analysis for Chemists and 
Biologists”, Glusker, Lewis and Rossi, VCH, 1994. 



Location of light atoms
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 Even in difference maps, light atoms can be difficult to locate

o depends also on how much lighter than the rest of the 

structure they are

 In many cases, it is not possible to find hydrogen atoms in 

electron density maps created from X-ray diffraction data

 Neutrons can help to overcome this problem

o remember that the neutron form factors do not depend 

linearly on Z!

2 0 2 3 - 2 0 2 4



An example of a difference map

2 82 0 2 3 - 2 0 2 4

“Crystal Structure Analysis for Chemists and 
Biologists”, Glusker, Lewis and Rossi, VCH, 1994. 



Isomorphous replacement
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 Consider a structure that contains only one heavy atom

o F1 = FM1 + FR

 If we can prepare two structures that are identical except 

for the identity of the heavy atom

o F2 = FM2 + FR

 We can calculate a difference map:

o F1 – F2 = FM1 - FM2

2 0 2 3 - 2 0 2 4



Isomorphous replacement
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 We can locate the heavy atoms using a Patterson map

o this gives us phase and amplitude of FM1 and FM2

 We know |F1| and |F2| from our diffraction experiment

 For a centrosymmetric structure (φ can only be 0 or 180°), 

we can uniquely determine the phases of F1 and F2

o the phase problem reduces to a sign problem (+ or -) in 

centrosymmetric structures

2 0 2 3 - 2 0 2 4



Example calculation for a 
centrosymmetric structure
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“Crystal Structure Analysis for Chemists and 
Biologists”, Glusker, Lewis and Rossi, VCH, 1994. 



Use of isomorphous replacement for 
macromolecules
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 Isomorphous replacement is commonly used for 
solving protein structures

 Native proteins contain a lot of water

 Replace some water with a heavy atom (e.g., K+)

 If things go well, you now have a native protein 
and a heavy atom derivative that  are 
isomorphous

o FPH = FP + FH

“Structure Determination by X-ray Crystallography”, 
Ladd and Palmer, Plenum, 1994. 



Phase ambiguity with one derivative
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“Structure Determination by X-ray 
Crystallography”, Ladd and Palmer, Plenum, 1994. 



Using multiple derivatives
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“Structure Determination by X-ray 
Crystallography”, Ladd and Palmer, 
Plenum, 1994. 



What if…?
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 What if we cannot prepare several derivatives of a protein?

o maybe only certain metals will substitute into the structure

 What if our “isomorphous” materials refuse to be isomorphous?

o changing the metal/cation could significantly alter the 

structure (even the crystal system)

 What if we can put two different metals in, but they have almost the 

same number of electrons?

o or for that matter, we have a structure with neighboring 

elements to start with?

2 0 2 3 - 2 0 2 4



Anomalous scattering
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 The scattering contribution of each atom in the unit cell is 

represented by its form factor f

o so far assumed to be a function of scattering angle only

 Form factors consist of several contributions:

o f = f0 + ∆f’ + i∆f”

 f’ and f” show little dependence on θ

 f” is approximately zero - unless the wavelength is close to the 

absorption edge of the atom!

o changes the scattering and thus all phases without 

disturbing the structure

2 0 2 3 - 2 0 2 4



f’ and f”

3 72 0 2 3 - 2 0 2 4

http://skuld.bmsc.washington.edu/scatter/AS_form.html



The effect of anomalous scattering

3 82 0 2 3 - 2 0 2 4

“Structure Determination by X-ray Crystallography”, 
Ladd and Palmer, Plenum, 1994. 



Phases from anomalous scattering

3 92 0 2 3 - 2 0 2 4

“Crystal Structure Analysis for 
Chemists and Biologists”, Glusker, 
Lewis and Rossi, VCH, 1994. 



Direct methods
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 Common for small organics or other small molecules with little 

scattering contrast between atoms

o e.g., AlF3: Al3+ and F- have identical electron configurations

 Phase probability methods

o makes use of non-negativity constraint on electron 

density

o actively uses the constraint that the electron density 

should be pooled in atoms

 Uses normalized structure factors

2 0 2 3 - 2 0 2 4



Symmetry information from |E| statistics

4 12 0 2 3 - 2 0 2 4

“Crystal Structure Analysis for Chemists and 
Biologists”, Glusker, Lewis and Rossi, VCH, 1994. 

 The statistical distribution of E values can yield information about crystal symmetry

“Structure Determination by X-ray Crystallography”, 
Ladd and Palmer, Plenum, 1994. 



Choice of origin
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 All phase angles are defined relative to an origin, which 

can be chosen arbitrarily

o changing the origin will only change the phase of 

Fhkl, but not the value of |Fhkl|

 Assigning phases to three reflections will fix the origin

o for non-centrosymmetric structures, a fourth 

reflection is used to fix the handedness

 The reflections that were initially assigned phases can be 

used as a basis set for the phase probability methods

o use strong reflections for 

better/more reliable statistics

2 0 2 3 - 2 0 2 4



Triplets
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 In 1952, Sayre showed that for centrosymmetric structures

o s(hkl) corresponds to the sign (phase angle 0 or 180°) of 

each hkl-reflection 

o ≈ represents the underlying probabilistic approach and 

should be read as “is likely to be”

 Three reflections with hkl values related by this relationship are 

called a triplet

o the corresponding d* vectors form a triangle

 If two signs are known, the third can be deduced

2 0 2 3 - 2 0 2 4
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Σ2 formula

4 4

 Hauptman and Karle introduced a more general form of the triplet 

formula in 1953:

o this formula uses all vector pairs with known signs that 

fulfill the triplet relationship

o can be used for probability calculations

 For non-centrosymmetric structures, estimation of relative phases 

is also possible, but the math gets much more complicated

2 0 2 3 - 2 0 2 4
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An example of using the Σ2 formula

4 52 0 2 3 - 2 0 2 4

“Crystal Structure Analysis for Chemists and 
Biologists”, Glusker, Lewis and Rossi, VCH, 1994. 
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