




1

## Introduction to Integration – SAINT

### Dr. Ina Dix Bruker AXS Karlsruhe

29/09/2008

## Location on the Computer



The most important file is:

### saint.ini

- all parameters (concerning <u>hardware</u> + <u>software</u>) are stored in this file
- this file is **system specific** 
  - $\Rightarrow$  same file can't be used on different systems

### Location on the computer

- SMART Suite: C:\SAXI\SAINT32
- APEX2 Suite: C:\bn\src\plugins\saint; C:\bn\SAINT

2

29/09/2008

## SAINT.INI



### [SAINT]

Version of used saint executable (newest: SAINT V7.56A)

[CONFIGURE] Parametrisation of hardware to be adjusted for <u>every</u> single instrument !

### [INTEGRATE]

Integration settings Can be used as general starting default values for every measurement protein ↔ small molecule

### [STAT]

Calculation of statistics based on user-specified Laue group

### [SORT]

Sorting of integrated intensities based on the HKL indices according to the user-specified Laue group

### [GLOBAL]

Refinement of cell parameter and orientation matrix based on strong reflections of the complete measurement and given/not given constraints

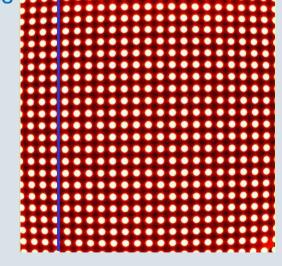
29/09/2008

## Processing Steps during Integration (1)

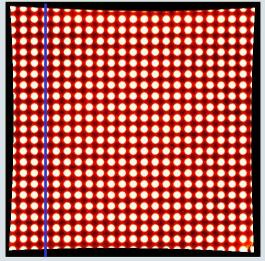


- Determination of initial background
- Determination of active pixel mask (for marking reflections which are outside the detector active area, behind the beam stop or the shadow of the low temp device)
- Read-in of the orientation matrix and computation of spatial correction tables
- Determination of initial spot-shape profiles, with concurrent refinement of the starting orientation matrix and initial background
- Integration of each defined run; output intensities are corrected for Lorentz factor, polarisation, air absorption and absorption due to variation in the path length through the detector faceplate (unsorted temporary intensity file is written: unsorted.raw)
- Elimination of spots whose shapes correlate poorly with model profile shapes, relative to other spots of similar I/sigma

## Processing Steps during Integration (2)




- Sorting of reflections into Laue group equivalent order
- Accumulation and reporting of statistics for the reflections in the output file
- Unit cell parameter refinement with the use of a large number of strong reflection of the entire data set
- Time-decay correction based on multiple measurements from "check" images
- Accumulation and reporting of statistics for the reflections in the timedecay-corrected output file


## **Input Files**



- Continous series of images
  - > more than 16 runs are possible in the same integration process if version SAINT V7.12A or higher is used
  - length of input string in saint.ini is restricted to 1024 chars
- One or more \*.spin (Proteum) or \*.p4p (SMART/APEX2) containing the refined orientation matrix, detector position corrections and the spatial correction tables



brass plate (distorted)



spatial correction (unwarping)

29/09/2008

Bruker AXS

## **Output Files**



| - Listing files:                               | *_01ls, *_02ls, *_03ls,, *_0mls, *_0tls                                                                  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| - Parameter files:                             | *_01.spin, *_02.spin, *_03.spin,, *_0u.spin, *_0m.spin, *_0t.spin                                        |
| - Intensity files:<br>single crystal:<br>twin: | *_01.raw, *_02.raw, *_03.raw,, _0 m*.raw, _0t*.raw<br>*_01.mul, *_02.mul, *_03.mul,, _0 m*.mul, _0t*.mul |
| - Matrix file:                                 | *_01ma<br>(binary file, containing strong reflection for global cell refinement)                         |

1, 2, 3, ... = run number, u = unconstrained, m = combined, t = decay time corrected

### **Diagnostic output files**

- initial background: \*\_01.\_ib, \*\_02.\_ib, \*\_03.\_ib, ....
- active pixel mask: \*\_01.\_am, \*\_02.\_am, \*\_03.\_am, ....
- background snapshots: bg\_snap\_01\_0001.sfrm

## **SAINT Basics**



Minimum input information:

- starting frame filename: name of first frame including path
- orientation matrix file name: \*.spin, \*.p4p (APEX2: info in database)
- output file name: \*.raw or \*.mul

| Setup | 1                                           |        |                                            |                                                          |
|-------|---------------------------------------------|--------|--------------------------------------------|----------------------------------------------------------|
|       | Starting Image Filename                     | Images | Output Filename                            |                                                          |
| 1     | D:\frames\guest\SAINT\KHE_test_01_0001.sfrm | 416    | D:\frames\guest\SAINT\work\KHE_test_01.raw | Resolution Limit [Å]: 0.75                               |
| 2     | D:\frames\guest\SAINT\KHE_test_02_0001.sfrm | 416    | D:\frames\guest\SAINT\work\KHE_test_02.raw |                                                          |
| 3     | D:\frames\guest\SAINT\KHE_test_03_0001.sfrm | 416    | D:\frames\guest\SAINT\work\KHE_test_03.raw | Unit Cells:                                              |
| 4     | D:\frames\guest\SAINT\KHE_test_04_0001.sfrm | 416    | D:\frames\guest\SAINT\work\KHE_test_04.raw | a= 5.96Å, α=90.00°, V=990Å <sup>3</sup>                  |
| 5     |                                             |        |                                            | b= 9.04Å, β=90.00°, Orthorhombic P<br>c=18.38Å, γ=90.00° |
| 6     |                                             |        |                                            | C=18.38A, Y=30.00                                        |

## SAINT Parameter File .P4P



77.6944 77.6944 77.6944 90.000 90.000 90.000 469168.500 CELL Cell parameter CELLSD 0.0022 0.0022 0.0022 0.000 0.000 0.000 60.979 Standard deviations of cell parameter ORT1 1.2806546e-002 -1.1723973e-003 5.6204386e-004 ORT2 6.1861449e-004 5.8652740e-004 -1.2845224e-002 ORT3 1.1471785e-003 1.2795272e-002 6.3422305e-004 3 x 3 Orientation matrix ZEROS 0.0000000 -0.0249640 -0.06666662 0.0562 0.1121 -0.0226 Goniometer zeros: omega zero [9; chi zero [9; crys tal translation X, Y, Z direction [pixel] SOURCE Cu 1.54184 1.54056 1.54439 2.00000 45.00 90.00 Radiation type Current loaded limit settings ADPAR 503.0000 511.0000 4.0000 1024 Area detector parameter: beam center X and Y [pixel]; distance [cm]; chip binning ADCOR -0.2947 -0.0098 -0.0169 0.3182 0.0792 0.1049 Area detector corrections: beam center X and Y [pixel]; distance [cm]; pitch, roll and yaw [9]

9

29/09/2008



## SAINT – Refinement Options

| Refinement Options                         | ?                                           |
|--------------------------------------------|---------------------------------------------|
| -Per-Image Refinement                      |                                             |
| Enable Orientation Refinement              | Damping Factor: 1.000                       |
| 🔽 Enable Box Size Refinement               | Initial XYZ Box Size [*]: 0.465 0.465 0.697 |
| - Periodic Refinement                      | Global Refinement                           |
| Enable Periodic Refinement                 | 🔽 Enable Global Refinement                  |
| Enable Initial Passes                      |                                             |
| Frequency [Images]: 50 🚔                   | Max. Number of Reflections: 9999            |
| Constrain Metric Symmetry of Unit Cell to: | Constrain Metric Symmetry of Unit Cell to:  |
| Orthorhombic                               | <ul> <li>Orthorhombic</li> </ul>            |
| C Crystal System: Orthorhombic 💌           | Crystal System: Orthorhombic 💌              |
| Refinement Parameters                      | Refinement Parameters                       |
| Detector                                   | Detector                                    |
|                                            | Horizontal Beam Center                      |
| Vertical Beam Center                       | Vertical Beam Center                        |
|                                            | - Distance                                  |
| Pitch                                      | Pitch III III III III III III III III III I |
|                                            |                                             |
| I Init Call                                | I I I with Call                             |
| Unit Cell                                  | □ Unit Cell<br>Axes                         |
|                                            |                                             |

**Default Refinement Parameter** 

### **Local Refinement**

- All Parameter are refined except 'Crystal Translation'

### **Global Refinement**

- All Parameter are refined

29/09/2008



| -Model Profiles                                               | Background Update                           |
|---------------------------------------------------------------|---------------------------------------------|
| Enable LS Profile Fitting                                     | Background Update Scaling Factor: 1.000     |
| Blend Profiles from All Detector Regions                      |                                             |
| Intensity/Sigma Lower Limit for Model Profile Update: 10.000  |                                             |
| Fraction of Model Profile Maximum for Simple Sum Mask: 0.050  | Active Image Queue Half-Width [Images]: 7 🚖 |
| Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000   | -Beam Monitor-                              |
| Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000 | Enable Beam Monitor Normalization           |
| Profile XYZ Half-Widths: 4 4 4                                | 📕 Normalize each Run Separately             |
| More Options                                                  | OK Cancel                                   |

### **Model Profiles**

Intensity/Sigma Lower Limit for Model Profile Update

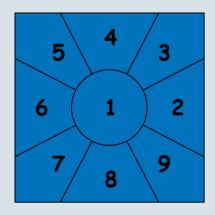
This value is a threshold for reflections that are candidates for updating the model profiles and orientation matrix.

It should be decreased if for weak scatterer following information is shown:

Too few reflections for orientation refinement. A smaller strong-reflection threshold might help

If you do it you also have to decrease Intensity/Sigma Upper Limit for LS Model Profile Fit

11




| 🔽 Enable LS Profile Fitting                                  | Background Update Scaling Factor: 1.000   |  |  |  |  |
|--------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| 📕 Blend Profiles from All Detector Region                    |                                           |  |  |  |  |
| Intensity/Sigma Lower Limit for Model Profile Update: 10.00  |                                           |  |  |  |  |
| Fraction of Model Profile Maximum for Simple Sum Mask: 0.05  | Active Image Queue Half-Width [Images]: 7 |  |  |  |  |
| Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.00   | 00 Beam Monitor                           |  |  |  |  |
| Lower Resolution Limit for LS Model Profile Fit (Å): 9999.00 | 00 🔽 Enable Beam Monitor Normalization    |  |  |  |  |
| Profile XYZ Half-Widths: 4 4                                 | 4 Normalize each Run Separately           |  |  |  |  |
| More Options                                                 | OK Cancel                                 |  |  |  |  |

### **Blend Profiles**

12

SAINT determines reflection spot shapes for nine regions on the detector of roughly equal areas. The model profile shapes are also used to calculate correlation coefficients for purpose of data rejection and for profile fitting of weak reflections.







13

29/09/2008

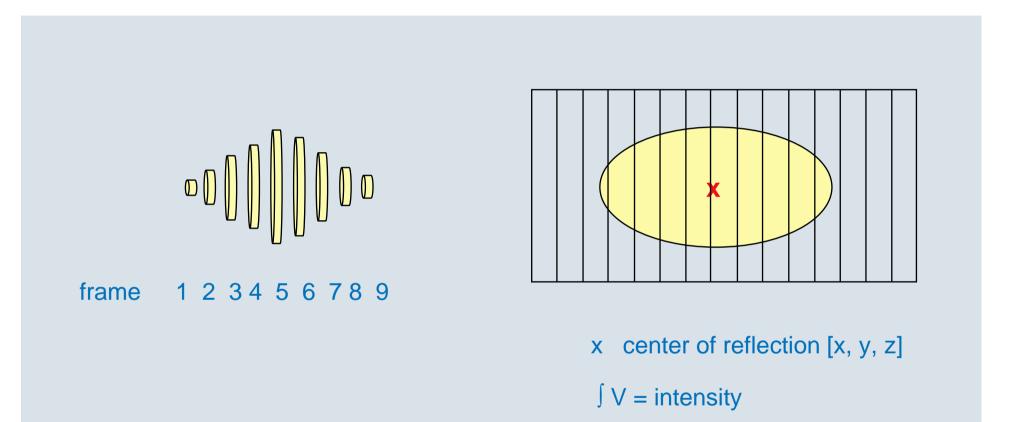


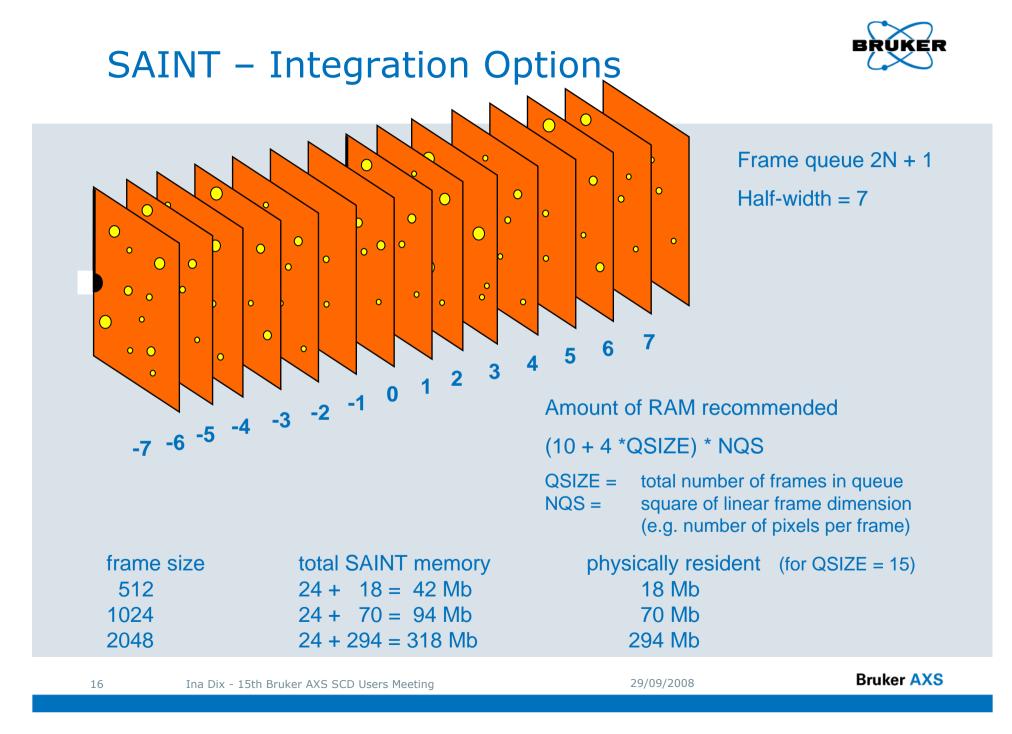
| Model Profiles-                                               | Background Update                            |
|---------------------------------------------------------------|----------------------------------------------|
| Enable LS Profile Fitting                                     | Background Update Scaling Factor: 1.000      |
| 📕 Blend Profiles from All Detector Regions                    |                                              |
| Intensity/Sigma Lower Limit for Model Profile Update: 10.000  |                                              |
| Fraction of Model Profile Maximum for Simple Sum Mask: 0.050  | Active Image Queue Half-Width [Images]:  7 🚖 |
| Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000   | Beam Monitor                                 |
| Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000 | Enable Beam Monitor Normalization            |
| Profile XYZ Half-Widths: 4 4 4                                | Normalize each Run Separately                |
| More Options                                                  | OK Cancel                                    |

#### **Image Queue**

14

Active frame queue half-width defines the total number of frames (2N + 1) stored to monitor reflection overlap (see SAINT output %Ful)


The frame queue serves as a temporary storage area for assembling partial reflections and for tracking reflections close to diffracting condition.


The %Ful item in the SAINT statistics reflects the average spot span in Z (crystal mosaicity) relative to the span of the frame queue. **Spots which are wider than the frame queue are "rejected"** and are <u>not</u> written to the output file.

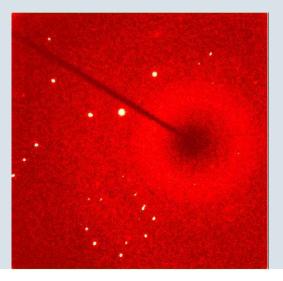
for 0.2° slicing: monitoring over  $3.0^\circ \Rightarrow \bigcirc$  for "normal" mosaicity

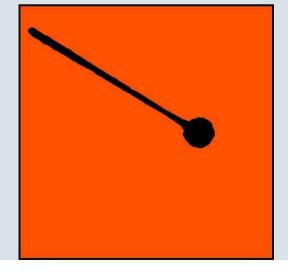
If %Ful is consistently 80% or more, one should increase the number of frames in the queue from the default of 15 (7-frame "half width").











| -Active Mask<br>Generate Ma                        | sk:                |                            |  |  |  |  |  |  |
|----------------------------------------------------|--------------------|----------------------------|--|--|--|--|--|--|
| Fractional Lower Limit of Average Intensity: 0.000 |                    |                            |  |  |  |  |  |  |
| C Use Pre-Exis                                     | ting Static Mask:  |                            |  |  |  |  |  |  |
|                                                    | Active Mask File:  | ш¥                         |  |  |  |  |  |  |
| C Use Pre-Exis                                     | ting Dynamic Masks |                            |  |  |  |  |  |  |
| -Algorithm                                         |                    |                            |  |  |  |  |  |  |
| Use Narrow                                         | Frame Algorithm    | C Use Wide Frame Algorithm |  |  |  |  |  |  |

### **Active Mask**

The active pixel mask is an image containing a small nonzero value for each pixel which is fully capable of receiving x-ray events, or zero for those pixel which are outside the active area or behind the beam stop.

The input is the fraction of mean I to qualify as active pixel. If the default 0 is used nothing is done.





29/09/2008



## SAINT – Listing (Log) File (for each run)

|                       |                                                                |        | _                |                         | _                       |            |                                                                                        |  |  |  |
|-----------------------|----------------------------------------------------------------|--------|------------------|-------------------------|-------------------------|------------|----------------------------------------------------------------------------------------|--|--|--|
| Background            | Background pixels updated = 90.83% Port, connections: 51408, 1 |        |                  |                         |                         |            |                                                                                        |  |  |  |
| # File #R             | Ref Er                                                         | rX E   | rrY I            | ErrZ                    | RmsX                    | RmsY       | RmsZ                                                                                   |  |  |  |
| 0.sfrm                | 0 0                                                            | .00 0  | 00.0             | 0.00                    | 0.00                    | 0.00       | 0.00                                                                                   |  |  |  |
| 1.sfrm                | 0 0                                                            | .00 0  | .00              | 0.00                    | 0.00                    | 0.00       | 0.00                                                                                   |  |  |  |
| 2.sfrm                | 59 0                                                           | .02 -0 | 0.00             | 0.05                    | 0.10                    | 0.10       | 0.10                                                                                   |  |  |  |
| 3.sfrm 1 <sup>-</sup> | 18 0                                                           | .01 -0 | 0.00             | 0.02                    | 0.16                    | 0.11       | 0.13                                                                                   |  |  |  |
| 4.sfrm 1 <sup>-</sup> | 10 0                                                           | .01 -0 | ).00 ·           | -0.01                   | 0.11                    | 0.11       | 0.11                                                                                   |  |  |  |
| 5.sfrm 12             | 25 -0                                                          | .01 -0 | ).01             | -0.01                   | 0.12                    | 0.11       | 0.13                                                                                   |  |  |  |
| #Ref                  |                                                                | Numb   | per of           | reflectior              | ns harves               | sted       |                                                                                        |  |  |  |
| ErrX, ErrY, Er        | rZ                                                             | the ha | arvest<br>of the | ed reflec<br>e frame, l | tions. Er<br>ErrZ is th | rX and EF  | cted position in pixels for<br>RRY are average errors in<br>e difference between<br>r. |  |  |  |
| RmsX, RmsY,           | , RmsZ                                                         |        |                  | ence in ol              |                         | vs predict | ted positions for                                                                      |  |  |  |
|                       |                                                                |        |                  |                         |                         |            | oove about 0.3 pixels with the orientation matrix.                                     |  |  |  |
|                       | . IEH D. J                                                     |        | Lissue M         |                         |                         | 20/00      |                                                                                        |  |  |  |

18

29/09/2008



## SAINT – Listing (Log) File (for each run)

| Backgrou | nd pixels u | ıpdate | d = 90.83 | Port        | Port, connections: 51408, 1 |      |      |      |       |
|----------|-------------|--------|-----------|-------------|-----------------------------|------|------|------|-------|
| # File   | Inorm       | #Sig   | %<2s      | <cor></cor> | > %Ful                      | XSiz | YSiz | ZSiz | Beam  |
| 0.sfrm   | 0           | 0      | 0         | 0.00        | 0                           | 0.58 | 0.52 | 0.31 | 1.006 |
| 1.sfrm   | 0           | 0      | 0         | 0.00        | 0                           | 0.58 | 0.52 | 0.31 | 1.005 |
| 2.sfrm   | 1618        | 16     | 12        | 0.91        | 14                          | 0.58 | 0.52 | 0.31 | 1.005 |
| 3.sfrm   | 1441.8      | 15     | 16        | 0.90        | 14                          | 0.59 | 0.54 | 0.28 | 1.005 |
| 4.sfrm   | 1971.1      | 15     | 17        | 0.91        | 16                          | 0.59 | 0.54 | 0.27 | 1.005 |
| 5.sfrm   | 1474.4      | 15     | 19        | 0.88        | 16                          | 0.61 | 0.55 | 0.27 | 1.005 |



Average intensity (normalised to 1 min / deg)

Average I/sigma signed observed minus predicted position in pixels



Percentage of harvested reflections having intensities less than twice its standard deviations.



Average coefficient (range -1 to 1) representing the degree of correlation between the 3D reflection profiles for the harvested reflections and the model 3D reflection profiles computed from strong spots.

Values consistently less then about 0.25 indicates a serious problem.



## SAINT – Listing (Log) File (for each run)

| Backgrour | nd pixels i | update | Port, connections: 51408, 1 |             |      |      |      |      |
|-----------|-------------|--------|-----------------------------|-------------|------|------|------|------|
| # File    | Inorm       | #Sig   | %<2s                        | <cor></cor> | %Ful | XSiz | YSiz | ZSiz |
| 0.sfrm    | 0           | 0      | 0                           | 0.00        | 0    | 0.58 | 0.52 | 0.31 |
| 1.sfrm    | 0           | 0      | 0                           | 0.00        | 0    | 0.58 | 0.52 | 0.31 |
| 2.sfrm    | 1618        | 16     | 12                          | 0.91        | 14   | 0.58 | 0.52 | 0.31 |
| 3.sfrm    | 1441.8      | 15     | 16                          | 0.90        | 14   | 0.59 | 0.54 | 0.28 |
| 4.sfrm    | 1971.1      | 15     | 17                          | 0.91        | 16   | 0.59 | 0.54 | 0.27 |
| 5.sfrm    | 1474.4      | 15     | 19                          | 0.88        | 16   | 0.61 | 0.55 | 0.27 |

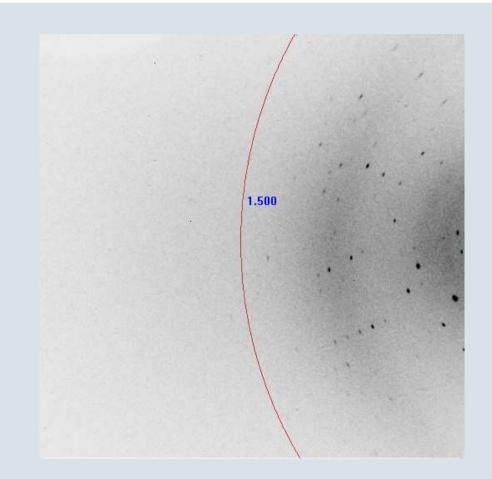
| 0.01111       |      | 10                                   | 10 0       | .00     | 10       | 0.01     | 0.00     | 0.27     |          |        |
|---------------|------|--------------------------------------|------------|---------|----------|----------|----------|----------|----------|--------|
| %Ful          |      | Average s<br>Spots whi<br>not writte | ch are w   | vider · | than the |          |          |          |          |        |
|               |      | 20 - 30 %                            |            | ⇒       | $\odot$  | for "no  | rmal" ci | rystals  |          |        |
|               |      | 50 - 60 %                            |            | ⇒       | E        | still ac | ceptabl  | е        |          |        |
|               |      | > 80 %                               |            | ⇒       | 8        | stop in  | tegratio | on, chai | nge para | ameter |
| XSiz, YSiz, Z | ZSiz | Real size                            | of the ref | lectio  | าร       |          |          |          |          |        |
|               |      |                                      |            |         |          |          |          |          |          |        |



## SAINT – Listing (Log) File (for all - \*\_0m.\_ls)

Coverage Statistics for ins\_0m.raw

| Snell    |      |        |        |        |     |       |      |          |   |       |    |       |      |
|----------|------|--------|--------|--------|-----|-------|------|----------|---|-------|----|-------|------|
| Angstrms | #Obs | Theory | %Compl | Redund | R   | sym   | Pair | s %Pairs | R | shell | #: | Sigma | %<2s |
| to 4.306 | 577  | 589    | 97.96  | 95.19  | - ( | 0.075 | 577  | 97.96    | 0 | .075  |    | 46.04 | 2.1  |
| to 3.419 | 1133 | 1134   | 99.91  | 98.38  | (   | 0.074 | 1133 | 3 99.91  | 0 | .073  |    | 36.55 | 2.5  |
| to 2.987 | 1675 | 1676   | 99.94  | 99.50  | (   | 0.074 | 1675 | 5 99.94  | 0 | .075  |    | 21.96 | 3.4  |
| to 2.714 | 2224 | 2225   | 99.96  | 100.20 | (   | 0.075 | 2224 | 99.96    | 0 | .082  |    | 12.83 | 9.7  |
| to 2.519 | 2760 | 2763   | 99.89  | 100.77 | (   | 0.076 | 2760 | ) 99.89  | 0 | .085  |    | 10.94 | 11.4 |
| to 2.371 | 3300 | 3301   | 99.97  | 100.94 | - ( | 0.077 | 3300 | ) 99.97  | 0 | .094  |    | 8.35  | 17.5 |
| to 2.252 | 3836 | 3837   | 99.97  | 101.04 | (   | 0.078 | 3836 | 6 99.97  | 0 | .102  |    | 6.99  | 21.0 |
| to 2.154 | 4362 | 4370   | 99.82  | 101.07 | (   | 0.079 | 4362 | 2 99.82  | 0 | .114  |    | 5.73  | 26.8 |
| to 2.071 | 4898 | 4899   | 99.98  | 101.09 | - ( | 0.081 | 4898 | 99.98    | 0 | .122  |    | 5.07  | 31.3 |
| to 2.000 | 5438 | 5430   | 100.00 | 99.67  | (   | 0.082 | 5437 | 7 100.00 | 0 | .148  |    | 3.78  | 40.5 |
|          |      |        |        |        |     |       |      |          |   |       |    |       |      |


Chall

Rsym Cumulative R(sym) on I for all reflections to the specified resolution <|I - <l>| / |<l>| >

Rshell R(sym) computed for the thin shell ending at this resolution.



## Practical Example – Weak Diffraction Power



| Model           |               |            |       |                    |
|-----------------|---------------|------------|-------|--------------------|
| Scan Axis Omega |               | <b>3</b> 0 |       |                    |
| Exposures / Cor | relation 2    |            |       |                    |
|                 | Last Requeste | d Last A   | ctual | Total (correlated) |
| Exposure (sec.) | 13.3333       | 13.36      |       | 120.403            |
|                 | 2 Theta       | Omega      | Phi   | Chi                |
| Starting Angles | 60            | 60         | 0     | 54.74              |
| Ending Angles   | 60            | 59.5       | 0     | 54.74              |
| Zero offsets    | 0.000         | 0.000      | 0.000 | 0.000              |

29/09/2008

# Practical Example – Integration with wrong ini-File



|   | Collect | Run<br># | First<br>Image<br># | 2-Theta | Omega | Phi | Chi /<br>Kappa | Rotation<br>Axis | # of<br>Images | Expose<br>Time<br>(sec) |
|---|---------|----------|---------------------|---------|-------|-----|----------------|------------------|----------------|-------------------------|
| 1 | Yes     | া        | 8                   | 60      | 60    | 0   | 54.736         | Omega            | 360            | 120 🔺                   |
| 2 |         | 2        | <u> </u>            | 43      | 43    | 90  | 54.736         | Omega            | 360            | 60                      |
| 3 | Yes     | 3        | া                   | 43      | 43    | 120 | 54.736         | Omega            | 360            | 60                      |
| 4 | Yes     | 4        | <u> </u>            | 60      | 60    | 150 | 54.736         | Omega            | 360            | 120                     |
| 5 | Yes     | 5        | °†                  | 60      | 60    | 210 | 54.736         | Omega            | 360            | 120                     |
| 6 | Yes     | 6        | 1                   | 60      | 60    | 270 | 54.736         | Omega            | 360            | 120                     |
| 7 | No      | 7        | 2 S <b>1</b>        | 60      | 43    | 0   | 54.736         | Phi              | 720            | 120                     |
| 8 |         |          |                     |         |       |     |                |                  |                |                         |

### **SAINT settings**

- Model Profile default
- Image Queue default
- Active Mask set

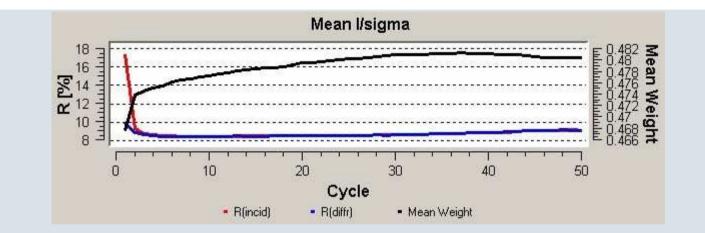
| atei | Bearbeite | n Format | 2        |          |        |       |       |        |        |        |      |   |
|------|-----------|----------|----------|----------|--------|-------|-------|--------|--------|--------|------|---|
| ove  | rade St   | atisti   | cs for r | nb_Om.ra | aw.    |       |       |        |        |        |      | 5 |
|      | 100       | 10       | 10       |          | an an  |       | 20    |        |        | shell  |      |   |
| An   | qstrms    | #obs     | Theory   | %comp1   | Redund | RSVM  | Pairs | %Pairs | Rshell | #Sigma | %<25 |   |
|      | 2.222     | 8309     |          | 100.00   |        | 0.873 | 4575  | 58.31  | 0.873  |        |      |   |
| to   | 1.765     | 16541    | 15511    | 100.00   | 3.74   | 0.944 | 9911  | 63.90  | 1.008  | 14.68  | 30.0 |   |
| 0    | 1.542     | 24657    | 23089    | 100.00   | 3.67   | 0.946 | 15478 | 67.04  | 0.952  | 9.29   | 41.4 |   |
| 0    | 1.401     | 32803    | 30716    | 100.00   | 3.59   | 0.974 | 21220 | 69.08  | 1.064  | 11.71  | 47.9 |   |
| 0    | 1.301     | 40764    | 38328    | 100.00   | 3.50   | 0.995 | 26594 | 69.39  | 1.071  | 13.53  | 50.2 |   |
| 0    | 1.224     | 48796    | 45805    | 100.00   | 3.38   | 0.998 | 31677 | 69.16  | 1.013  | 14.49  | 50.9 |   |
| to   | 1.163     | 56089    | 53445    | 100.00   | 3.22   | 0.992 | 35231 | 65.92  | 0.934  | 14.19  | 50.3 |   |
| 0    | 1.112     | 63203    | 60989    | 100.00   | 3.06   | 0.987 | 37707 | 61.83  | 0.860  | 13.77  | 48.3 |   |
| to   | 1.069     | 70230    | 68493    | 100.00   | 2.92   | 0.982 | 39816 | 58.13  | 0.759  | 13.08  | 42.8 |   |
| to   | 1.033     | 74942    | 76130    | 98.44    | 2.82   | 0.979 | 40973 | 53.82  | 0.695  | 14.62  | 39.8 |   |

# Practical Example – Integration with wrong ini-File



### SAINT log-file output

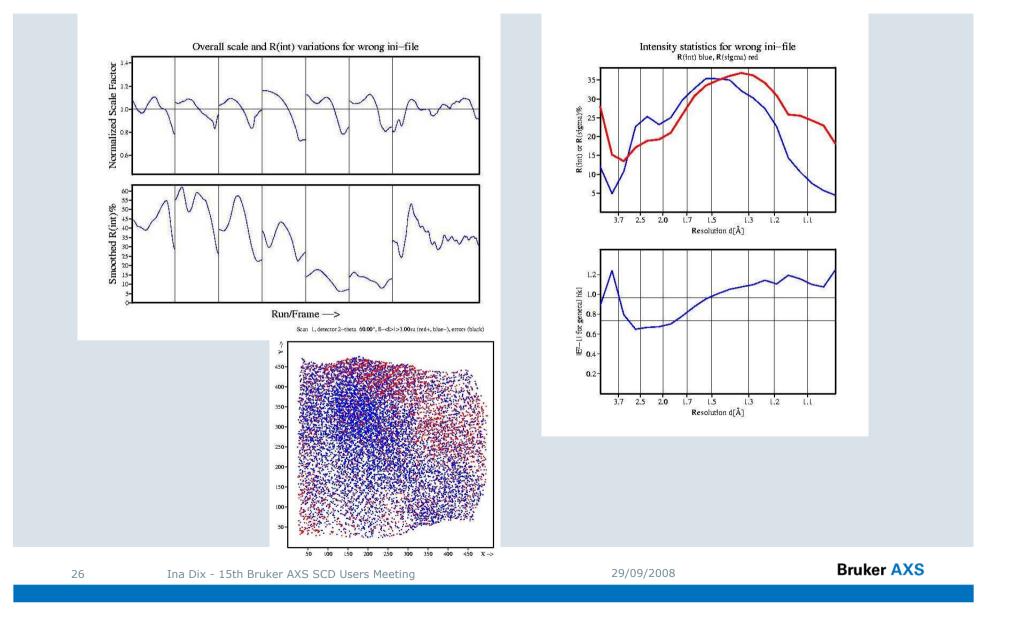
| 🛃 mb_01ls - Editor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Datei         Bearbeiten         Figmat         2           Background pixels updated =         84.10%           # File #Ref Err× ErrY ErrZ R           0.sfrm         0 0.00         0.00         0.00           1.sfrm         0 0.00         0.00         0.00         0           2.sfrm         73         0.17         -0.05         0.04         0           3.sfrm         95         0.20         -0.11         0.00         0           3.sfrm         97         0.04         -0.04         -0.01         0           4.sfrm         97         0.04         -0.01         -0.02         0           5.sfrm         98         0.19         -0.01         -0.02         0           6.sfrm         108         -0.01         -0.07         0         0         0.8         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | ig %<2s <cor>     KFul XSiz YSiz ZSiz Beam 0 0 0.00 0 1.01 1.03 0.73 1.003 0 0 0.00 0 1.01 1.03 0.73 1.003 3 59 0.14 8 1.01 1.03 0.73 1.003 3 71 0.21 10 1.05 1.04 0.74 1.003 2 59 0.18 9 1.31 1.14 0.74 1.003 2 68 0.20 9 1.31 1.14 0.74 1.003 2 64 0.18 10 1.31 1.13 0.74 1.003 2 64 0.18 10 1.31 1.13 0.74 1.003 2 64 0.17 9 1.30 1.12 0.74 1.003 2 64 0.19 9 1.29 1.27 0.74 1.003 3 67 0.21 9 1.29 1.27 0.74 1.003 3 67 0.21 9 1.29 1.27 0.75 1.003 3 70 0.20 10 1.27 1.30 0.75 1.003 4 59 0.18 10 1.26 1.32 0.75 1.003 2 65 0.19 9 1.26 1.34 0.75 1.003 2 64 0.19 9 1.25 1.34 0.75 1.003</cor> |
| Check orientation mat<br>Overlay in APEX2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |


24

29/09/2008

0




## Practical Example – SADABS wrong ini-File



| <ul> <li>Initial Reflections</li> <li>Total</li> </ul> | 211518         | _     |                            |                                      |
|--------------------------------------------------------|----------------|-------|----------------------------|--------------------------------------|
| Unique                                                 | 74942          |       | Batches                    | 2-1                                  |
|                                                        |                |       | 1<br>2<br>2<br>3<br>4<br>5 | 60.0<br>43.0<br>43.0<br>60.0<br>60.0 |
| -Reflections after                                     | Outlier Reject | ion — | 6<br>7                     | 60.0<br>60.0                         |
| Total                                                  |                | 18509 |                            |                                      |
| % Rejected                                             | 4              | 4.0   |                            |                                      |
| Unique                                                 | 6              | 4729  |                            |                                      |
| % Rejected                                             | 1              | 3.6   |                            |                                      |
|                                                        |                |       |                            |                                      |

| Batches | 2-Theta | R(int) | Incid. factors | Diffr. factors | K     | Total | l>2sig(l) |
|---------|---------|--------|----------------|----------------|-------|-------|-----------|
| 21      | 60.0    | 0.4330 | 0.845 - 1.192  | 0.645 - 2.531  | 2.010 | 16643 | 4956      |
| 2       | 43.0    | 0.5086 | 2.204 - 2.894  | 0.599 - 2.640  | 2.229 | 19789 | 4737      |
| 2 3     | 43.0    | 0.3991 | 1.210 - 1.589  | 0.605 - 2.567  | 2.116 | 15970 | 6984      |
| 2 4     | 60.0    | 0.3344 | 0.459 - 0.734  | 0.751 - 2.796  | 1.825 | 16669 | 6235      |
| 5       | 60.0    | 0.1163 | 0.351 - 0.503  | 0.757 - 2.788  | 1.671 | 14068 | 9378      |
| 6       | 60.0    | 0.1225 | 0.298 - 0.417  | 0.461 - 2.129  | 1.306 | 12932 | 6843      |
| 6       | 60.0    | 0.3529 | 1.608 - 2.194  | 0.578 - 2.468  | 2.015 | 22438 | 9693      |
|         |         |        |                |                |       |       |           |



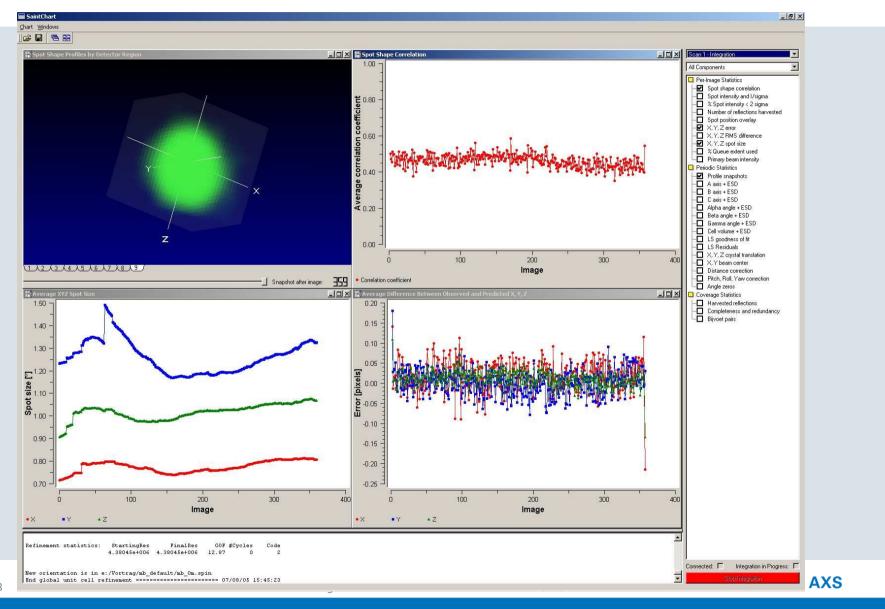


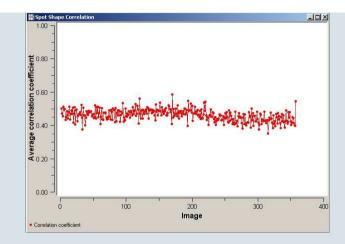


## Practical Example – Integration of all Runs

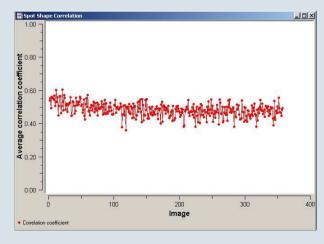
| Runs | integ | rated |
|------|-------|-------|
|      |       |       |

| Run 1 | 1-360 | 360 |
|-------|-------|-----|
| run 2 | 1-360 | 360 |
| run 3 | 1-360 | 360 |
| run 4 | 1-360 | 360 |
| run 5 | 1-360 | 360 |
| run 6 | 1-360 | 360 |
| run 7 | 1-720 | 720 |

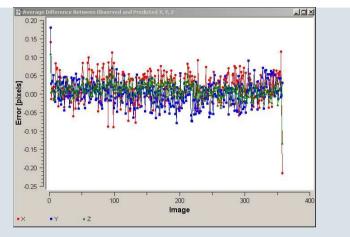

### **SAINT** settings


- Model Profile decreased
- Image Queue increased

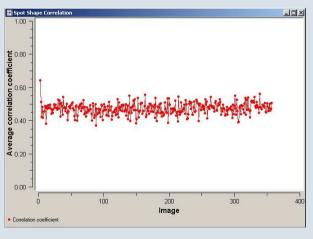
29/09/2008


- Active Mask set

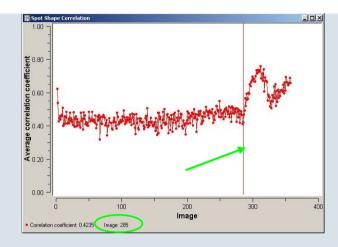
| 🗿 mt  | _0mls -   | Editor            |                   |          |        |        |       |        |                                                                                                                |                     |      | X       |
|-------|-----------|-------------------|-------------------|----------|--------|--------|-------|--------|----------------------------------------------------------------------------------------------------------------|---------------------|------|---------|
| Datei | Bearbeite | n F <u>o</u> rmat | 2                 |          |        |        |       |        |                                                                                                                |                     |      |         |
| Tove  | rage St   | atisti            | cs for r          | nb_Om.ra | aw.    |        |       |        |                                                                                                                |                     |      | -       |
|       | ङ         | 53                | 33                | 10       |        |        | 43    | 4      |                                                                                                                | shell.              |      |         |
|       | gstrms    |                   |                   |          | Redund |        |       | %Pairs |                                                                                                                |                     |      |         |
| to    | 2.174     | 8229              | 8431              | 97.60    | 5.16   | 0.143  | 6058  | 71.85  | 0.143                                                                                                          | 15.23               | 30.6 |         |
| to    | 1.726     | 16471             | 16614             | 99.14    | 5.12   | 0.234  | 13000 | 78.25  | 0.454                                                                                                          | 5.16                | 47.1 |         |
| to    | 1.508     | 24728             | 24800             | 99.71    | 4.88   | 0.279  | 19896 | 80.23  | 0.663                                                                                                          | 2.29                | 69.4 |         |
| to    | 1.370     | 32948             | 32894             | 100.00   | 4.63   | 0.344  | 26501 | 80.56  | 1.004                                                                                                          | 2.08                | 82.6 |         |
| to    | 1.272     | 41195             |                   | 100.00   | 4.41   | 0.407  | 32931 | 80.39  | 1.055                                                                                                          | 700 700 700 700 700 | 85.4 |         |
| to    | 1.197     | 49382             | (C.C. 3. 7. 7. 7. | 100.00   | 4.21   | 0.466  | 39013 | 79.38  |                                                                                                                |                     | 87.0 |         |
| to    | 1.137     | 57448             |                   | 100.00   | 3.98   | 0.503  | 43844 | 76.75  | 1.040                                                                                                          | 77.5                | 88.1 |         |
| to    | 1.088     | 65372             | D-2007-020-02-0   | 100.00   | 3.74   | 0.521  | 47224 | 72.24  | 0.996                                                                                                          |                     | 88.4 | denied. |
| to    | 1.046     | 72970             | 73348             |          | 3.55   | 0.534  | 50268 | 68.53  | second particular design of the second s |                     | 90.5 |         |
|       | 1.010     | 79525             | 81401             | 97.70    | 3.40   | 0.543  | 52636 | 64.66  |                                                                                                                |                     | 89.7 |         |
| to    | 1.010     | 19323             | 01401             | 97.70    | 5.40   | 0. 343 | 32030 | 04.00  | 1.010                                                                                                          | 2.92                | 09.7 | -       |
| •     |           |                   |                   |          |        |        | - 1   |        |                                                                                                                |                     |      |         |
| N. 1  |           |                   |                   |          |        |        |       |        |                                                                                                                |                     |      | - //.   |



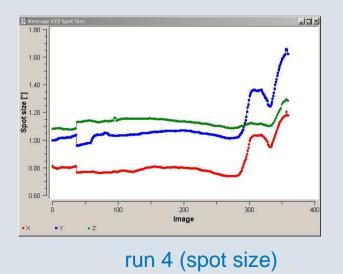


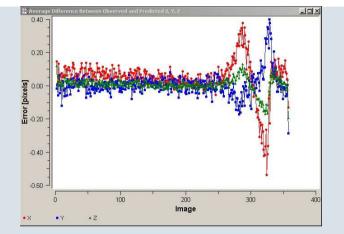


### run 1 (correlation coefficient)




run 2 (correlation coefficient)




### run 1 (position error)

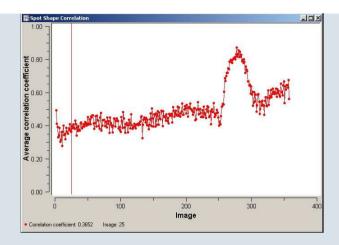



### run 3 (correlation coefficient)

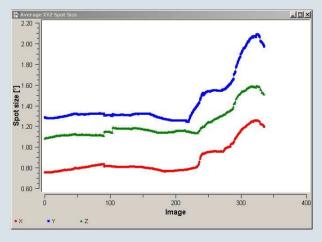


### run 4 (correlation coefficient)

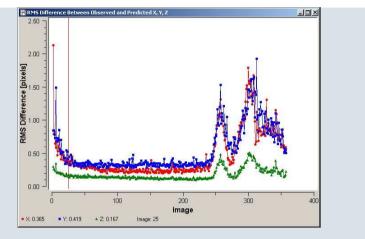




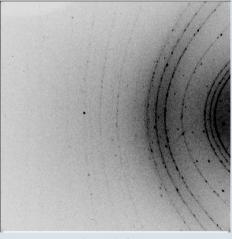

### run 4 (position error)




29/09/2008

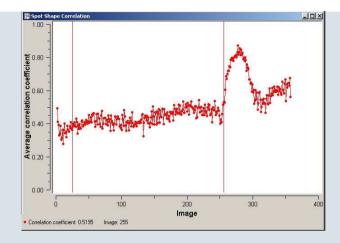

Bruker AXS




### run 5 (correlation coefficient)



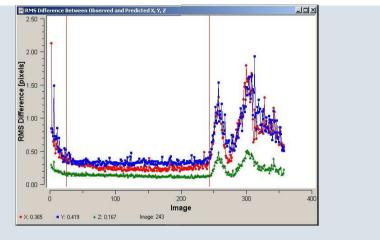
run 5 (spot size)



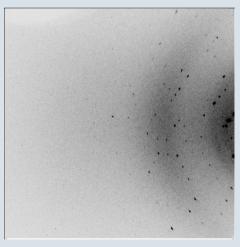

### run 5 (position error)



### run 5 bad frames 1


29/09/2008

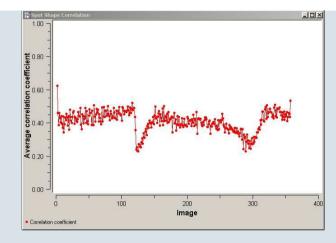



### run 5 (correlation coefficient)

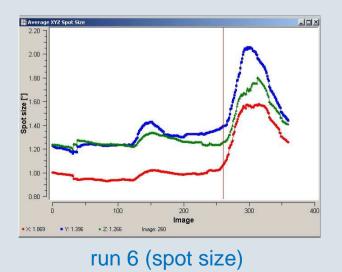


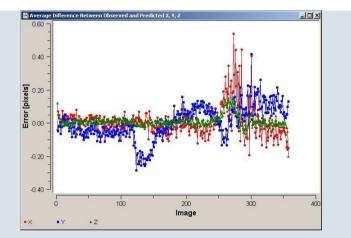
run 5 (spot size)



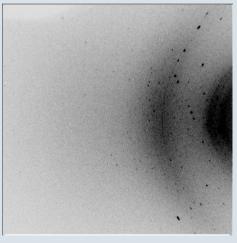

### run 5 (position error)




### run 5 bad frames 2


Ina Dix - 15th Bruker AXS SCD Users Meeting

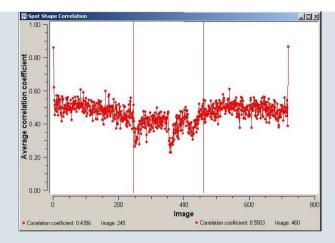
29/09/2008



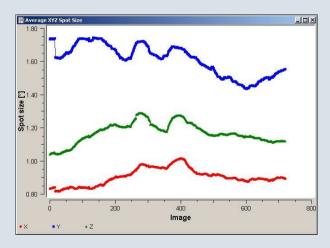

### run 6 (correlation coefficient)



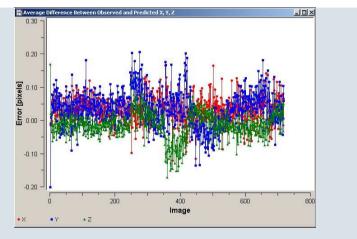



### run 6 (position error)

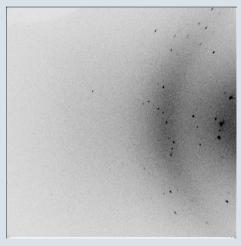



### run 6 bad frames

#### Ina Dix - 15th Bruker AXS SCD Users Meeting


29/09/2008



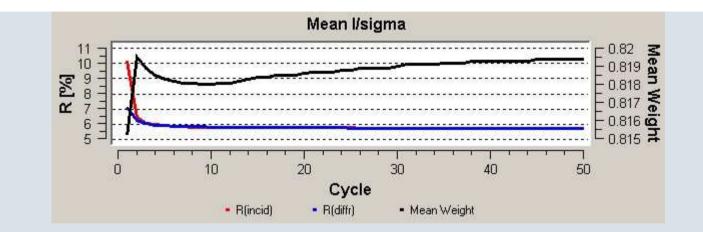

### run 7 (correlation coefficient)

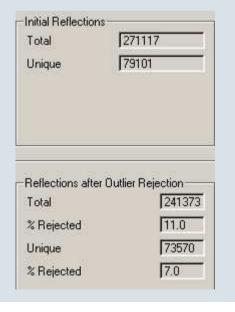


run 7 (spot size)



### run 7 (position error)

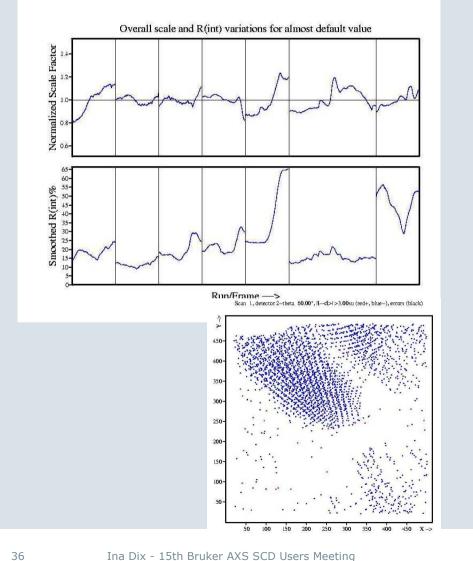


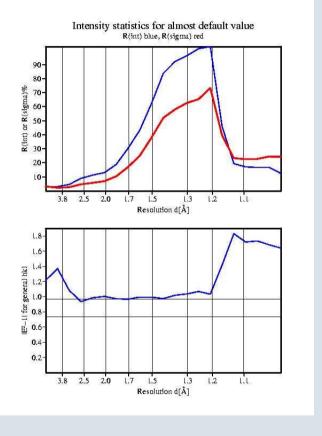


### run 7 bad frames ?

29/09/2008



### Practical Example – SADABS all Runs




| Batches | 2-Theta R(int) In |        | 2-Theta R(int) Incid. factors Diffr. factor |               | K     | Total | l>2sig(l) |  |
|---------|-------------------|--------|---------------------------------------------|---------------|-------|-------|-----------|--|
| 1       | 60.0              | 0.1842 | 0.713 - 1.007                               | 0.907 - 1.330 | 0.785 | 39561 | 13066     |  |
| 2       | 43.0              | 0.1152 | 0.977 - 1.090                               | 0.925 - 1.311 | 0.730 | 29712 | 10756     |  |
| 2 3     | 43.0              | 0.1965 | 0.811 - 0.964                               | 0.925 - 1.205 | 0.929 | 29971 | 10116     |  |
| 2 4     | 60.0              | 0.2207 | 0.707 - 0.903                               | 0.931 - 1.329 | 0.940 | 32447 | 9160      |  |
| 5       | 60.0              | 0.3583 | 0.526 - 0.754                               | 0.907 - 1.237 | 1.214 | 35682 | 8306      |  |
| 6       | 60.0              | 0.1525 | 0.660 - 0.887                               | 0.907 - 1.269 | 0.729 | 44481 | 15781     |  |
| 7       | 60.0              | 0.4504 | 0.705 - 0.879                               | 0.906 - 1.265 | 1.384 | 29519 | 7624      |  |

29/09/2008

## Practical Example – SADABS Diagnostic Plots BRUKER all Runs





29/09/2008

Bruker AXS



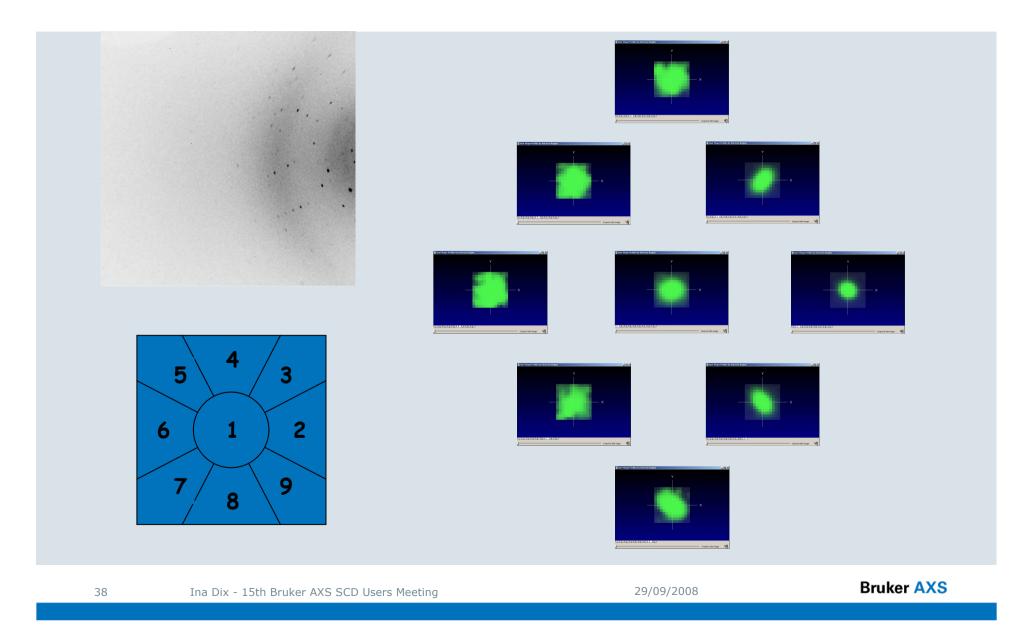
## Practical Example – Integration without bad Frames / nine Profiles

#### **Runs integrated**

| Run 1 | 1-360  | 360 |
|-------|--------|-----|
| run 2 | 1-360  | 360 |
| run 3 | 1-360  | 360 |
| run 4 | 1-270  | 270 |
| run 5 | 25-255 | 230 |
| run 6 | 1-250  | 250 |
| run 7 | 1-720  | 720 |

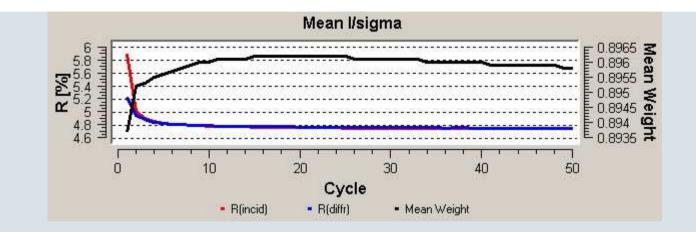
#### SAINT settings

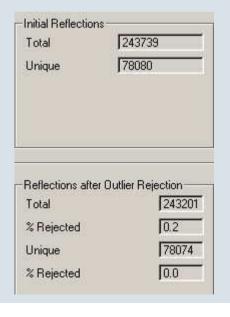
- Model Profile decreased
- Image Queue increased


29/09/2008

- Active Mask set

| _0mls -   | Editor                                                                                                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
|-----------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bearbeite | n F <u>o</u> rmat                                                                                     | 2                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
| rage St   | atisti                                                                                                | cs for r                                                                                                                                                           | nb_Om.ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aw.                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
| न्दर      |                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
|           | #obs                                                                                                  | Theory                                                                                                                                                             | %compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Redund                                                                                                                                                                                                                                                                                                                                | RSym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %Pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rshell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #Sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %<2s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 2.175     | 8233                                                                                                  | 8427                                                                                                                                                               | 97.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.62                                                                                                                                                                                                                                                                                                                                  | 0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 1.726     | 16463                                                                                                 | 16609                                                                                                                                                              | 99.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.59                                                                                                                                                                                                                                                                                                                                  | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 1.508     | 24727                                                                                                 | 24783                                                                                                                                                              | 99.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.38                                                                                                                                                                                                                                                                                                                                  | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 1.370     | 32974                                                                                                 | 32879                                                                                                                                                              | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.18                                                                                                                                                                                                                                                                                                                                  | 0.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 1.272     | 41151                                                                                                 | 40945                                                                                                                                                              | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.99                                                                                                                                                                                                                                                                                                                                  | 0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 1.197     | 49326                                                                                                 | 49128                                                                                                                                                              | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.82                                                                                                                                                                                                                                                                                                                                  | 0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 1.137     | 57234                                                                                                 | 57096                                                                                                                                                              | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.62                                                                                                                                                                                                                                                                                                                                  | 0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
| 1.088     | 64786                                                                                                 | 65295                                                                                                                                                              | 99.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       | 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and a                                                                                                                                                                                                                                                                                |
| 1.046     | 72019                                                                                                 | 73310                                                                                                                                                              | 98.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
| 1.010     | 78081                                                                                                 | 81347                                                                                                                                                              | 95.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.12                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | costs a same tanto tongs a block for the back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |
|           |                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       | and the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.2.2.2.2.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2012<br>1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                    |
|           |                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + /                                                                                                                                                                                                                                                                                  |
|           | Bearbeite<br>rage St<br>2.175<br>1.726<br>1.508<br>1.370<br>1.272<br>1.197<br>1.137<br>1.088<br>1.046 | rage Statisti<br>gstrms #obs<br>2.175 8233<br>1.726 16463<br>1.508 24727<br>1.370 32974<br>1.272 41151<br>1.197 49326<br>1.137 57234<br>1.088 64786<br>1.046 72019 | Bearbeiten         Format         2           rrage         Statistics         for           rgstrms         #Obs         Theory           2.175         8233         8427           1.726         16463         16609           1.508         24727         24783           1.370         32974         32879           1.272         41151         40945           1.197         49326         49128           1.137         57234         57096           1.088         64786         65295           1.046         72019         73310 | Bearbeiten Format ?<br>rage Statistics for mb_0m.ra<br>gstrms #Obs Theory %Compl<br>2.175 8233 8427 97.70<br>1.726 16463 16609 99.12<br>1.508 24727 24783 99.77<br>1.370 32974 32879 100.00<br>1.272 41151 40945 100.00<br>1.197 49326 49128 100.00<br>1.137 57234 57096 100.00<br>1.088 64786 65295 99.22<br>1.046 72019 73310 98.24 | Bearbeiten         Format         ?           rrage         Statistics         for         mb_Om.raw           rgstrms         #obs         Theory         %Compl         Redund           2.175         8233         8427         97.70         4.62           1.726         16463         16609         99.12         4.59           1.508         24727         24783         99.77         4.38           1.370         32974         32879         100.00         4.18           1.272         41151         40945         100.00         3.99           1.197         49326         49128         100.00         3.62           1.137         57234         57096         100.00         3.62           1.088         64786         65295         99.22         3.41           1.046         72019         73310         98.24         3.25 | Bearbeiten         Format         ?           rrage         Statistics         for         mb_Om.raw           rgstrms         #Obs         Theory         %Compl         Redund         Rsym           2.175         8233         8427         97.70         4.62         0.079           1.726         16463         16609         99.12         4.59         0.098           1.508         24727         24783         99.77         4.38         0.116           1.370         32974         32879         100.00         4.18         0.134           1.272         41151         40945         100.00         3.99         0.152           1.197         49326         49128         100.00         3.82         0.168           1.137         57234         57096         100.00         3.62         0.178           1.088         64786         65295         99.22         3.41         0.183           1.046         72019         73310         98.24         3.25         0.187 | Bearbeiten         Format         2           rrage         Statistics         for         mb_0m.raw           rgstrms         #obs         Theory         %Compl         Redund         Rsym         Pairs           2.175         8233         8427         97.70         4.62         0.079         4399           1.726         16463         16609         99.12         4.59         0.098         9502           1.508         24727         24783         99.77         4.38         0.116         14509           1.370         32974         32879         100.00         4.18         0.134         19461           1.272         41151         40945         100.00         3.99         0.152         24250           1.197         49326         49128         100.00         3.82         0.168         28888           1.137         57234         57096         100.00         3.62         0.178         32275           1.088         64786         65295         99.22         3.41         0.183         34214           1.046         72019         73310         98.24         3.25         0.187         36003 | Bearbeiten         Format         ?           rrage         Statistics         for         mb_0m.raw           rgstrms         #Obs         Theory         %Compl         Redund         Rsym         Pairs         %Pairs           2.175         8233         8427         97.70         4.62         0.079         4399         52.20           1.726         16463         16609         99.12         4.59         0.098         9502         57.21           1.508         24727         24783         99.77         4.38         0.116         14509         58.54           1.370         32974         32879         100.00         4.18         0.134         19461         59.19           1.272         41151         40945         100.00         3.69         0.152         24250         59.23           1.197         49326         49128         100.00         3.82         0.168         28888         58.80           1.137         57234         57096         100.00         3.62         0.178         32275         56.53           1.088         64786         65295         99.22         3.41         0.183         34214         52.40 | Bearbeiten         Format         2           rrage         Statistics         for         mb_0m.raw           rgstrms         #obs         Theory         %Compl         Redund         Rsym         Pairs         %Pairs         Rshell           2.175         8233         8427         97.70         4.62         0.079         4399         52.20         0.079           1.726         16463         16609         99.12         4.59         0.098         9502         57.21         0.153           1.508         24727         24783         99.77         4.38         0.116         14509         58.54         0.312           1.370         32974         32879         100.00         4.18         0.134         19461         59.19         0.516           1.272         41151         40945         100.00         3.82         0.168         28888         58.80         0.646           1.137         57234         57096         100.00         3.62         0.178         32275         56.53         0.641           1.088         64786         65295         99.22         3.41         0.183         34214         52.40         0.571           1.046 | Bearbeiten         Figmat ?           rrage         Statistics         for mb_0m.raw         Shell.           rgstrms         #obs         Theory %Compl Redund         Rsym         Pairs %Pairs         Shell.           2.175         8233         8427         97.70         4.62         0.079         4399         52.20         0.079         15.06           1.726         16463         16609         99.12         4.59         0.098         9502         57.21         0.153         4.23           1.508         24727         24783         99.77         4.38         0.116         14509         58.54         0.312         1.59           1.370         32974         32879         100.00         4.18         0.134         19461         59.19         0.516         0.78           1.197         49326         49128         100.00         3.82         0.168         28888         58.80         0.646         0.52           1.137         57234         57096         100.00         3.62         0.178         32275         56.53         0.641         0.42           1.088         64786         65295         99.22         3.41         0.183         34214         52. | Bearbeiten         Format         2           irage         Statistics         for         mb_0m.raw         shell           irgstrms         #obs         Theory         %Compl         Redund         Rsym         Pairs         %Pairs         Mshell         #Sigma         %<2s |

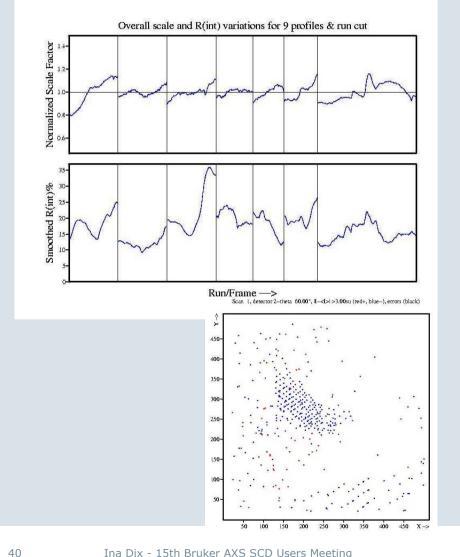


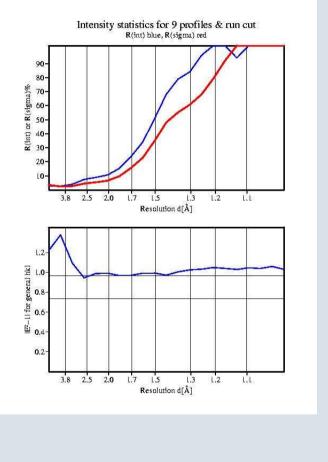


## Practical Example – Profiles 1 – 9 in SAINT





#### Practical Example – SADABS nine Profiles




| Batches | 2-Theta | R(int) | Incid. factors | Diffr. factors | K     | Total | 1>2sig(1) |
|---------|---------|--------|----------------|----------------|-------|-------|-----------|
| 2 1     | 60.0    | 0.1812 | 0.710 - 1.023  | 0.888 - 1.417  | 0.737 | 41774 | 14270     |
| 2       | 43.0    | 0.1191 | 0.999 - 1.134  | 0.928 - 1.341  | 0.705 | 33789 | 11666     |
| 2 3     | 43.0    | 0.2195 | 0.791 - 0.981  | 0.928 - 1.269  | 0.955 | 32575 | 10506     |
| 2 4     | 60.0    | 0.2028 | 0.737 - 0.801  | 0.910 - 1.430  | 0.700 | 30960 | 9076      |
| 5       | 60.0    | 0.1747 | 0.695 - 0.821  | 0.889 - 1.252  | 0.712 | 26658 | 7866      |
| 6       | 60.0    | 0.1999 | 0.581 - 0.732  | 0.889 - 1.244  | 0.835 | 28628 | 7559      |
| 7       | 60.0    | 0.1501 | 0.659 - 0.854  | 0.888 - 1.331  | 0.697 | 48817 | 17231     |

39

### Practical Example – SADABS Diagnostic Plots BRUKER nine Profiles



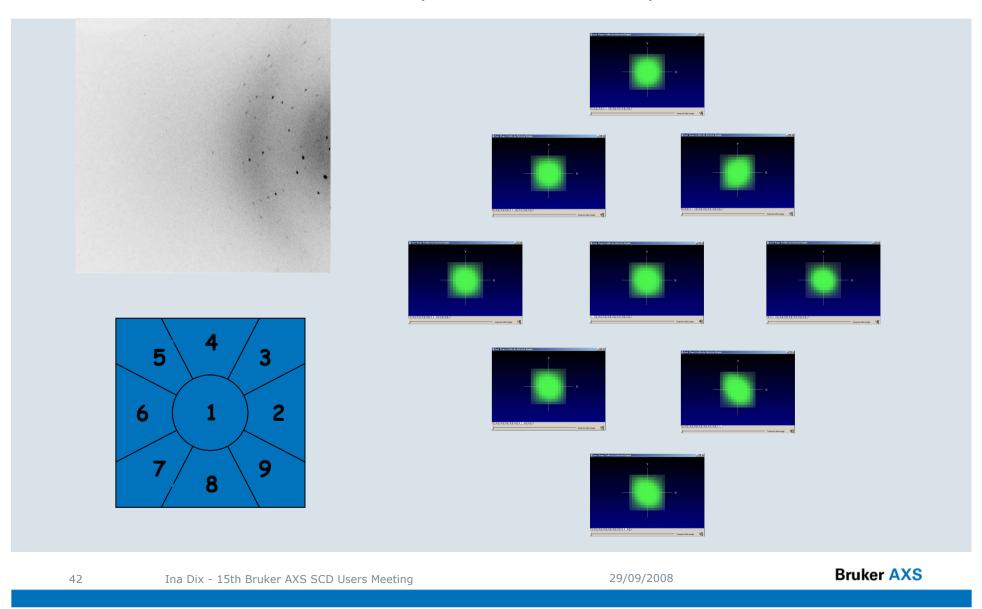


#### Practical Example – Integration without bad Frames One Profile (Blend Profiles)

#### **Runs integrated**

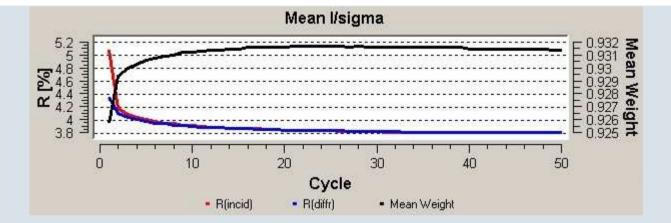
| Run 1 | 1-360  | 360 |
|-------|--------|-----|
| run 2 | 1-360  | 360 |
| run 3 | 1-360  | 360 |
| run 4 | 1-270  | 270 |
| run 5 | 25-255 | 230 |
| run 6 | 1-250  | 250 |
| run 7 | 1-720  | 720 |

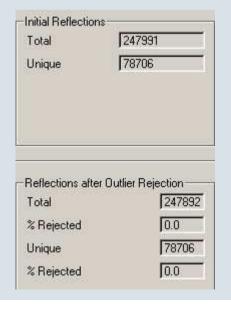
#### SAINT settings


- Model Profile decreased
- Image Queue increased
- Active Mask set
- Blend Profiles enabled

29/09/2008

| CONTRACTOR OF | _0mls -   | CONTRACTOR OF STREET, S | 120      |          | _      |                    | -             | _      |        |         |      |     |
|---------------|-----------|-----------------------------------------------------------------------------------------------------------------|----------|----------|--------|--------------------|---------------|--------|--------|---------|------|-----|
| atei          | Bearbeite | n F <u>o</u> rmat                                                                                               | 2        |          |        |                    |               |        |        |         |      |     |
| ove           | rage St   | atisti                                                                                                          | cs for r | nb_Om.ra | aw     |                    |               |        |        |         |      |     |
|               | 51        |                                                                                                                 |          |          |        |                    |               |        |        | .shell. |      |     |
| An            | qstrms    | #obs                                                                                                            | Theory   | %comp1   | Redund | RSym               | Pairs         | %Pairs | Rshell | #Sigma  | %<25 |     |
| to            | 2.169     | 8299                                                                                                            | 8472     |          | 4.69   | 0.071              | 4516          |        |        |         |      |     |
| to            | 1.722     | 16607                                                                                                           | 16714    | 99.36    | 4.64   | 0.087              | 9715          | 58.12  | 0.147  | 4.50    | 49.7 |     |
| to            | 1.504     | 24890                                                                                                           | 25006    | 99.54    | 4.43   | 0.099              | 14768         | 59.06  | 0.290  | 1.43    | 75.4 |     |
| to            | 1.367     | 33239                                                                                                           | 33162    | 100.00   | 4.22   | 0.111              | 19842         | 59.83  | 0.492  | 0.58    | 90.5 |     |
| to            | 1.269     | 41466                                                                                                           | 41269    | 100.00   | 4.03   | 0.121              | 24713         | 59.88  | 0.566  | 0.40    | 93.8 |     |
| to            | 1.194     | 49746                                                                                                           | 49504    | 100.00   | 3.86   | 0.130              | 29455         | 59.50  | 0.613  | 0.29    | 95.7 |     |
| to            | 1.134     | 57738                                                                                                           | 57579    | 100.00   | 3.66   | 0.137              | 32877         | 57.10  | 0.636  |         | 97.2 |     |
| 0             | 1.085     | 65402                                                                                                           | 65797    | 99.40    | 3.45   | 0.140              | 34895         | 53.03  | 0.626  | 0.16    | 97.9 | 100 |
| to            | 1.043     | 72772                                                                                                           | 73911    | 98.46    | 3.27   | 0.143              | 36724         | 49.69  | 0.690  | 0.06    | 99.4 |     |
| to            | 1.007     | 78706                                                                                                           | 82029    | 95.95    | 3.15   | 0.145              | 38129         | 46.48  | 0.707  | 0.01    | 99.7 |     |
| 1             |           |                                                                                                                 |          |          |        | 10 10 10 Sec. 5785 | 1.000 Carrier |        |        |         |      |     |
|               |           |                                                                                                                 |          |          |        |                    |               |        |        |         |      | •   |

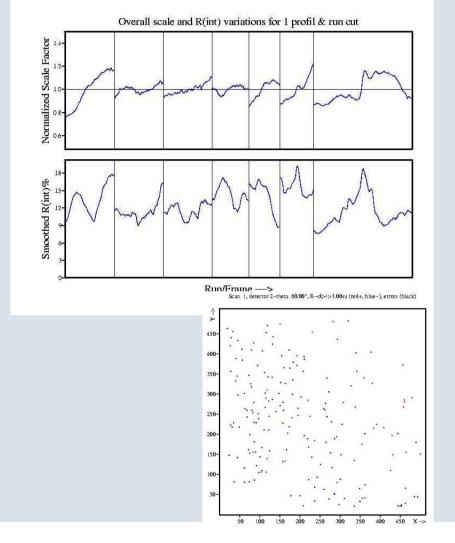

# Practical Example – One Profile in SAINT (Blend Profiles)

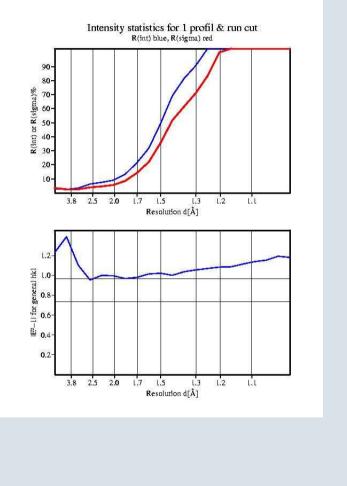





# Practical Example – SADABS one Profile (Blend Profiles)






| Batches | 2-Theta | B(int) | Incid. factors | Diffr. factors | K     | Total | l>2sig(l) |
|---------|---------|--------|----------------|----------------|-------|-------|-----------|
| 1       | 60.0    | 0.1325 | 0.678 - 1.062  | 0.872 - 1.367  | 0.640 | 42551 | 14207     |
| 2       | 43.0    | 0.1116 | 1.037 - 1.206  | 0.910 - 1.414  | 0.655 | 34009 | 11323     |
| 2 3     | 43.0    | 0.1142 | 0.919 - 1.092  | 0.916 - 1.284  | 0.661 | 33879 | 11329     |
| 2 4     | 60.0    | 0.1407 | 0.749 - 0.833  | 0.885 - 1.368  | 0.639 | 31742 | 9087      |
| 5       | 60.0    | 0.1359 | 0.655 - 0.829  | 0.873 - 1.358  | 0.640 | 26937 | 7664      |
| 6       | 60.0    | 0.1538 | 0.545 - 0.764  | 0.873 - 1.329  | 0.702 | 29106 | 7729      |
| 7       | 60.0    | 0.1099 | 0.612 - 0.830  | 0.873 - 1.363  | 0.615 | 49668 | 17446     |

29/09/2008

# Practical Example – SADABS Diagnostic Plots

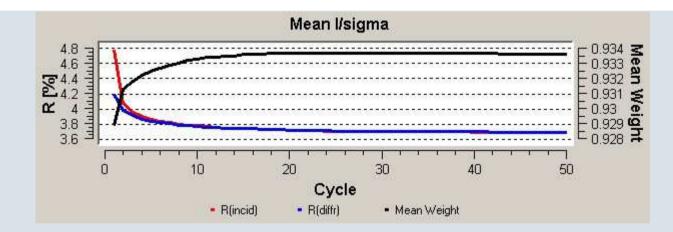




# Practical Example – Integration best up to 1 Å BRUKER One Profile

#### Runs integrated

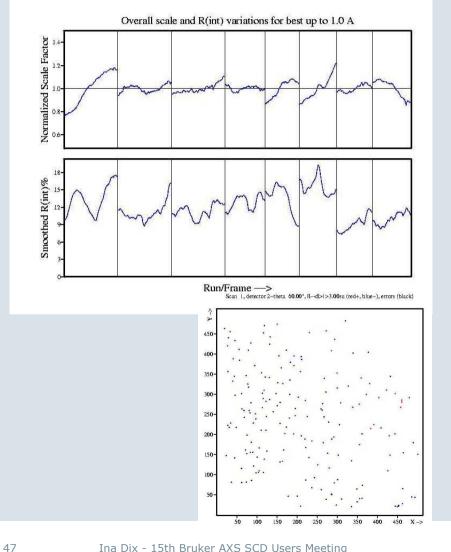
| run 1  | 1-360   | 360 |
|--------|---------|-----|
| run 2  | 1-360   | 360 |
| run 3  | 1-360   | 360 |
| run 4  | 1-270   | 270 |
| run 5  | 25-255  | 230 |
| run 6  | 1-250   | 250 |
| run 7a | 1-244   | 244 |
| run 7b | 460-720 | 230 |

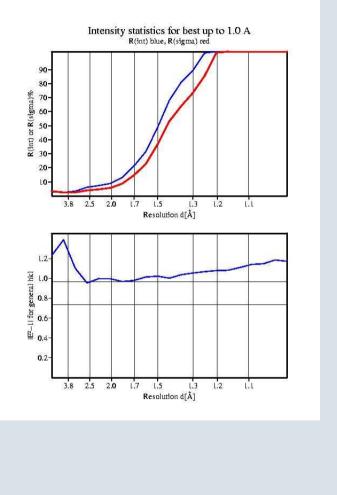

#### SAINT settings

- Model Profile decreased
- Image Queue increased
- Active Mask set
- Blend Profiles enabled

29/09/2008

| atei | Bearbeite | n Format | 2       |          |         |                          |       |        |        |        |      |   |
|------|-----------|----------|---------|----------|---------|--------------------------|-------|--------|--------|--------|------|---|
| ove  | rade St   | atisti   | s for r | nb_Om.ra | aw.     |                          |       |        |        |        |      | - |
|      | 20        | 50       | 10      |          | 600 600 | nen nom inne nom inne no | 204   |        |        | shell. |      |   |
| An   | qstrms    | #obs     | Theory  | %comp1   | Redund  | Rsym                     | Pairs | %Pairs | Rshell | #sigma | %<25 |   |
| to   | 2.169     | 8285     | 8472    |          | 4.45    | 0.066                    |       |        | 0.066  |        |      |   |
| :0   | 1.722     | 16580    | 16714   | 99.20    | 4.39    | 0.083                    | 9707  | 58.08  | 0.145  | 4.53   | 49.6 |   |
| 0    | 1.504     | 24867    | 25006   | 99.44    | 4.19    | 0.095                    | 14758 | 59.02  | 0.289  | 1.43   | 75.4 |   |
| 0    | 1.367     | 33212    | 33162   | 100.00   | 3.99    | 0.106                    | 19832 | 59.80  | 0.484  | 0.58   | 90.3 |   |
| 0    | 1.269     | 41437    | 41269   | 100.00   | 3.80    | 0.116                    | 24700 | 59.85  | 0.558  | 0.40   | 93.8 |   |
| 0    | 1.194     | 49695    | 49504   | 100.00   | 3.64    | 0.125                    | 29432 | 59.45  | 0.602  | 0.29   | 95.6 |   |
| 0    | 1.134     | 57654    | 57579   | 100.00   | 3.45    | 0.131                    | 32876 | 57.10  | 0.626  | 0.22   | 97.1 |   |
| 0    | 1.085     | 65310    | 65797   | 99.26    | 3.24    | 0.134                    | 34894 | 53.03  | 0.619  | 0.16   | 97.7 | 1 |
| 0    | 1.043     | 72640    | 73911   | 98.28    | 3.08    | 0.137                    | 36723 | 49.69  | 0.681  | 0.06   | 99.4 |   |
| :0   | 1.007     | 78595    | 82029   | 95.81    | 2.96    | 0.138                    | 38128 | 46.48  | 0.711  | 0.02   | 99.7 |   |




| Total                                  | 232456                         |
|----------------------------------------|--------------------------------|
| Unique                                 | 78595                          |
|                                        |                                |
| Reflections aft                        | er Outlier Rejection —         |
|                                        | er Outlier Rejection<br>232405 |
| Reflections aft<br>Total<br>% Rejected | 12040 Protection Contraction   |
| Total                                  | 232405                         |

| Bat | ches | 2-Theta | B(int) | Incid. factors | Diffr. factors | K     | Total | I>2sig(I) |
|-----|------|---------|--------|----------------|----------------|-------|-------|-----------|
|     | 1    | 60.0    | 0.1328 | 0.706 - 1.096  | 0.887 - 1.316  | 0.644 | 42553 | 14153     |
| 2   | 2    | 43.0    | 0.1093 | 1.087 - 1.239  | 0.914 - 1.463  | 0.655 | 34010 | 11325     |
| 2   | 3    | 43.0    | 0.1118 | 0.970 - 1.130  | 0.921 - 1.310  | 0.663 | 33884 | 11307     |
|     | 4    | 60.0    | 0.1274 | 0.798 - 0.862  | 0.898 - 1.306  | 0.633 | 31742 | 9156      |
|     | 5    | 60.0    | 0.1320 | 0.683 - 0.852  | 0.887 - 1.393  | 0.641 | 26937 | 7663      |
| 2   | 6    | 60.0    | 0.1537 | 0.557 - 0.785  | 0.887 - 1.366  | 0.705 | 29107 | 7710      |
| 2   | 7    | 60.0    | 0.0903 | 0.530 - 0.586  | 0.887 - 1.335  | 0.590 | 16573 | 6477      |
|     | 8    | 60.0    | 0.0996 | 0.567 - 0.716  | 0.887 - 1.212  | 0.602 | 17599 | 6811      |

## Practical Example – SADABS Diagnostic Plots BRUKER best up to 1 Å





Ina Dix - 15th Bruker AXS SCD Users Meeting

# Practical Example – Comparison of different Integrations



|                    | wrong ini | all runs | blend N | blend Y | best<br>up to 1 Å |  |
|--------------------|-----------|----------|---------|---------|-------------------|--|
| total no. of refl. | 211518    | 271117   | 243739  | 247991  | 232456            |  |
| unique refl.       | 74942     | 79101    | 78080   | 78706   | 78595             |  |
| R(int) input       | 58.69     | 21.68    | 7.42    | 6.58    | 6.10              |  |
| R(int) output      | 9.14      | 5.73     | 4.76    | 3.82    | 3.69              |  |
| after rejection    |           |          |         |         |                   |  |
| total no. of refl. | 118509    | 241373   | 243201  | 247892  | 232405            |  |
| % rejected         | 44.0      | 11.0     | 0.2     | 0.0     | 0.0               |  |
| unique refl.       | 64729     | 73570    | 78074   | 78706   | 78595             |  |
| % rejected         | 13.6      | 7.0      | 0.0     | 0.0     | 0.0               |  |