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Dreissenid Mussels & Benthification

> High population density
> High filtration rate

l

Increased water clarity

» Form clusters

l

Increased benthic structure




Dreissena are Ecosystem Engineers

Org_anis_:r_ns that directly or indirectly modulate the
avalla_lblllty of resources to other species, by causing
physical state changes in biotic or abiotic materials.

Jones et al. 1994

Ecology, Ricklefs & Miller.
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Suite of expected changes with benthification

eutrophic benthified

)y

light penetration light penetration

= Limited benthic production = Extensive benthic production

= Low benthic complexity = High benthic complexity

= High foraging efficiency by
benthic fish (high benthic to
pelagic flux)

= Low foraging efficiency by
benthic fish (low benthic to
pelagic flux)



Dreissena affect lakes at multiple spatial scales
and across trophic levels

System level
Increased light penetration \

Benthic PP
*Benthic grazers
*Visual foragers




Benthic Processes Affected by Dreissena

= Primary production
Macrophytes: System-wide
Algae: System-wide & Local

= Benthic populations
Microbes: Local
Macroinvertbrates: System-wide & Local

=» Visual foragers: System-wide & Local
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= SAV maximum depth increased after Dreissena
=> Species evenness increased
= Myriophylum only spp to decrease

¢ Diver survey
® Hydroacoustic survey

Maximum plant depth (m)
O =~ N WO O OO N

1975 1980 1985 1990 1995 2000 2005

Zhu et al. 2006 Ecosystems 9:1-12



Benthic Processes Affected by Dreissena

= Primary production
Macrophytes: System-wide
Algae: System-wide & Local
Oneida Lake
Experiments
Local mechanisms

= Benthic populations
Microbes: Local
Macroinvertbrates: System-wide & Local

= Visual foragers: System-wide & Local



Response of benthic algal primary production
to increased clarity in Oneida Lake

o Whole lake GPP 2003 & 2004
oLight response curves (N ~ 200) &
modified Fee model to estimate

production

o Back casting using long-term
clarity data

Substrate and depth
map of Oneida Lake

Becky Johnson-Cecala; Cecala et al. 2008. J. Integrated Plant Biology 50:1452-1466



Diver collecting surface core to measure
primary production on soft sediment




Whole-lake summer benthic GPP has increased and become
less variable
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~4% increase, was net change & included areas of
reduced production due to photoinhibiton
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Benthic GPP has become less variable following changes in
attenuation

52,000 =

51,000 =+

50,000 =+

49,000 =+

48,000 + N M <= BenthicGPP |
—&- | ight attenuation ]

47,000 = I ] I I ] I LT 0.3

Average benthic production ( Kg C/day)

1975
1979
1983
1987
1991 .
1995
1999
2003

Avg July attenuation (k)



Benthic Processes Affected by Dreissena

= Primary production
Macrophytes: System-wide
Algae: System-wide & Local
Oneida Lake
Experiments
Local mechanisms

= Benthic populations
Microbes: Local
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Experimental Approach: light x Dreissena x P x other grazers
w/ Kim Schulz, Peibing Qin, Xinli Xi




Fluorometric
measure of
photosynthesis

Electron Transport
Rate (ETR) =
proportional to
photosynthesis

Thylakoid




= System wide and localized effects of Dreissena
on Cladophora-dominated algal community

High light Low light i
High P Among treatments Low P System
wide
effects
Localized

effects




= Light (but not P) strongly affected both NPP and ETR

Non-colonized rocks (system wide effect)
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= Dreissena sequestered P in experimental mesocosms,
mimicking near shore shunt
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Localized Effects
ETR higher with Dreissena at both high & low light

Statistical model accounts for other- treatment variance

Difference small compared to light effect
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Benthic Processes Affected by Dreissena

= Primary production
macrophytes: System-wide
algae: System-wide & Local
Oneida Lake
Experiments
Local mechanisms

= Benthic populations
microbes: Local
macroinvertbrates: System-wide & Local

= Visual foragers: System-wide & Local



Do Dreissena contribute nutrients to promote algal blooms?
Manipulative experiment with Lyngbya wollei

Patricia Armenio; MS student U. Toledo



Dreissena shells (N=10) Sand (N=10)



No mass change, but Dreissena contributed some
nutrients to Lyngbya
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However...
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Lyngbya density in western Lake Erie
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Conclusions

1. Increased water clarity, hence bottom light promotes
increased benthic PP, both plants and algae

2. Dreissena also increase benthic algal photosynthesis
at local scale

3. Transfer of nutrients is a possible mechanism for
local-scale effects— work in progress

4. When ZM aggregations are large, they may elevate
water column P and other nutrients and thereby
increase benthic algal photosynthesis, Near Shore

Shunt



Benthic Processes Affected by Dreissena

= Primary production
Macrophytes: System-wide
Algae: System-wide & Local
Oneida Lake
Experiments
Local mechanisms

= Benthic populations
Microbes: Local
Macroinvertbrates: System-wide & Local
Hard substrate-Oneida Lake
Soft substrate-western Lake Erie
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Dreissena attached to hard substrate increase invertebrate
density, especially on soft background
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Combined lake-wide and local effects of Dreissena may
favor grazers and predators

“~ | &

detritivores predators grazers
A+ lake-wide and
local; refuge

+; local, structure from predators + |lake-wide;
-; soft sediment and higher prey hlghe.r benthic
dwellers; loss of + local: primary

detritus structure production

S
periphyton

—



Water clarity and benthic GPP have increased in Oneida Lake
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As water clears, relatively more amphipods, but not
chironomids found at shallow station
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Periodic intensive survey of embayment shows predatory
taxa higher in Dreissena-colonized habitats
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Percent predatory taxa consistently higher with Dreissena
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Combined lake-wide and local effects of Dreissena may
favor grazers and predators
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Combined lake-wide and local effects of Dreissena may
favor grazers and predators

Underestimating secondary
production?

~ #i &

detritivores predators grazers

4. lake-wide and
local; refuge
from predators
and higher prey

Distributional
shift observed
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dwellers; loss of

_ + |local;
detritus structure
e Y
periphyton

—



Benthic Processes Affected by Dreissena

=» Primary production
Macrophytes: System-wide
Algae: System-wide & Local
Oneida Lake
Experiments
Local mechanisms

= Benthic populations
Microbes: Local
Macroinvertbrates: System-wide & Local
Hard substrate-Oneida Lake
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=» Visual foragers: System-wide & Local



Kristen DeVanna; PhD student U. Toledo



Dreissena clusters on hard substrate repeatedly shown to
elevate localized invertebrate density

How do Dreissena affect soft sediment
invertebrates such as Hexagenia?




Hexagenia habitat selection experiments

5 mayfly densities; 100 -1200/m?
Mayflies allowed to chose habitat
Removed after 48 hr




= Hexagenia prefer live Dreissena clusters
=>Suggests resource importation
=0nly go to bare sediment at high density

100% -
80% -
60% - [ live mussels
[ artificial clusters
40% - .
Bl bare sediment
0% \

1200

% mayflies in habitat
S
X

Mayfly density (number/m?)
DeVanna et al. in review



75% of Hexagenia inhabited high-
density Dreissena habitats

% Hexagenia in habitat
>

0% 25% 50% 100%
% Dreissena coverage

DeVanna et al. in review



Do Hexagenia always prefer Dreissena
habitat: hypoxia ?

H,— Hexagenia avoid Dreissena clusters during hypoxic
conditions

H,—> Hexagenia leave burrows more often in hypoxic
conditions compared to normoxic conditions




Does predation threat change
Hexagenia behavior under different O,
conditions?

q

H, Hexagenia select for Dreissena clusters and leave

burrows less when fish predation threat is present
—

H, Hexagenia leave burrows under low O, even when
predation threat is present




Methods

* Hexagenia Behavioral
Arenas

2 habitat types:
Dreissena and sediment

e Treatments

* Fish presence (N=5) vs. no fish (N=5)

* High oxygen vs. hypoxia (imposed at 24 hr to both
treatments)



Methods

* Day 1
 Introduced 6 mayflies
* Observed for 15 X 6
minutes (Initial) |
 Day 2

* Initial Observations
(Pre-hypoxia)

* Lowered oxygen
(<30% saturation)

* Observed for 15
minutes (post-hypoxia)

 Observed after 3 hours
of hypoxia



Number of Hexagenia

Initial Selection for Dreissena-
covered sediment

4.5 -

3.5 -

] No Fish
. Yellow Perch

2.5 -

1.5 -

0.5 -

Bare Sediment Dreissena



More Hexagenia were exposed in the
structured habitat during hypoxia
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Hexagenia waited longer to expose
themselves when fish were present

% Hexagenia fully exposed
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Hexagenia left their burrows during
hypoxia, but many were still sheltered
beneath cluster

=% below cluster

* -
Yellow Perch Present in cluster
== above cluster

% Hexagenia fully exposed

Pre-hypoxia 15 min of hypoxia . 3 hours of hypo;(ia



Conclusions:
=» Hexagenia select for habitat with Dreissena

=> May be exploiting microbial, algal or other
resources in clusters

=>0Ongoing experiments to determine factors
controlling habitat choice, e.g. fish predation, hypoxia

Preliminary results show that
hypoxia results in neutral habitat
selection and Hexagenia exit burrows
and expose heads and bodies




Trophic Cascade

1 1 Effects
transmitted
;L ® among trophic
L @ A levels; up, down,
@s or middle out



Ecosystem Engineering Cascade
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