M.S. and M.A. Comprehensive Analysis Exam

Sönmez Şahutoğlu and Akaki Tikaradze

December 2015

To get full credit you must show all your work.
This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. (a) Define the Infimum of a bounded set $A \subset \mathbb{R}$.
(b) Let $A=\left\{(-1)^{n \frac{n-1}{n}}: n=1,2,3, \ldots\right\}$. Find inf A. Prove your claim.
2. (a) Define a uniformly continuous function on \mathbb{R}.
(b) Use the definition to show that $f(x)=x^{2}$ is not uniformly continuous on $[0, \infty)$.
3. (a) Let f be a bounded function on $[a, b]$. Define the Riemann integral $\int_{a}^{b} f$.
(b) Use the definition of Riemann integration to compute $\int_{-1}^{1} f$ for $f(x)=\left\{\begin{array}{ll}0 & -1 \leq x \leq 0 \\ x & 0<x \leq 1\end{array}\right.$.
4. Let $\left\{x_{n}\right\}$ be sequence convergent to zero and $\left\{y_{n}\right\}$ be bounded. Show that $\lim _{n \rightarrow \infty} x_{n} y_{n}=0$.
5. Let (X, d) be a metric space and $A, B \subset X$. Show that $\overline{(A \cup B)}=\bar{A} \cup \bar{B}$.
6. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be two metric spaces and $f: X \rightarrow Y$ be a continuous function. Show that if X is compact, then $f(X)$ is compact.

Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Find the image of the square $\{z \in \mathbb{C}: 1<|z|<2, \operatorname{Im}(z)>0\}$ under the mapping $\log z$ where \log is defined using the principle branch.
2. Let C denote the unit circle with counter-clockwise orientation. Compute the integral

$$
\oint_{C} \bar{z} d z
$$

3. Expand $f(z)=\frac{1}{z(z-1)}$ in a Laurent series valid for $\{z \in \mathbb{C}:|z|>1\}$.
4. Evaluate the integral $\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x$.
5. Find an entire function whose imaginary part is $v(x, y)=x+x y+y+2015$.
6. Find all possible entire functions f with the property that $|f(z)| \leq|z|$ for all $z \in \mathbb{C}$. Prove that you have found all such functions.
