M.S. and M.A. Comprehensive Analysis Exam

Sönmez Şahutoğlu and Akaki Tikaradze

December 2015

To get full credit you must show all your work.

This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

- 1. (a) Define the Infimum of a bounded set $A \subset \mathbb{R}$.
 - (b) Let $A = \left\{ (-1)^n \frac{n-1}{n} : n = 1, 2, 3, ... \right\}$. Find inf *A*. Prove your claim.
- 2. (a) Define a uniformly continuous function on \mathbb{R} .
 - (b) Use the definition to show that $f(x) = x^2$ is not uniformly continuous on $[0, \infty)$.
- 3. (a) Let *f* be a bounded function on [a, b]. Define the Riemann integral $\int_a^b f$.
 - (b) Use the definition of Riemann integration to compute $\int_{-1}^{1} f$ for $f(x) = \begin{cases} 0 & -1 \le x \le 0 \\ x & 0 < x \le 1 \end{cases}$.
- 4. Let $\{x_n\}$ be sequence convergent to zero and $\{y_n\}$ be bounded. Show that $\lim_{n\to\infty} x_n y_n = 0$.
- 5. Let (X, d) be a metric space and $A, B \subset X$. Show that $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$.
- 6. Let $(X, d_X), (Y, d_Y)$ be two metric spaces and $f : X \to Y$ be a continuous function. Show that if X is compact, then f(X) is compact.

Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

- 1. Find the image of the square $\{z \in \mathbb{C} : 1 < |z| < 2, \text{Im}(z) > 0\}$ under the mapping $\log z$ where log is defined using the principle branch.
- 2. Let C denote the unit circle with counter-clockwise orientation. Compute the integral

$$\oint_C \overline{z} dz.$$

- 3. Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for $\{z \in \mathbb{C} : |z| > 1\}$.
- 4. Evaluate the integral $\int_0^\infty \frac{1}{(1+x^2)^2} dx$.
- 5. Find an entire function whose imaginary part is v(x, y) = x + xy + y + 2015.
- 6. Find all possible entire functions f with the property that $|f(z)| \le |z|$ for all $z \in \mathbb{C}$. Prove that you have found all such functions.