THE UNIVERSITY OF TOLEDO Comprehensive Examination (Analysis) Spring 2003 M.A./M.S. (Pure/Applied Mathematics)

Željko Čučković and Ram Verma

Part A: REAL ANALYSIS

To pass the exam, answer at least 2 questions from each of the Part A and Part B and 6 questions in total correctly.

- 1. (a) Define the "uniform convergence" of a sequence $\{f_n\}_{n=1}^{\infty}$ of real-valued functions to the function f on a set E.
 - (b) Test whether the sequence $\{f_n\}_{n=1}^{\infty}$ converges uniformly to zero on $[0, \infty)$, where $f_n(x) = \frac{nx}{(1+n^2x^2)}$ for $(0 \le x < \infty)$.
 - (c) Prove that a sequence $\{f_n\}_{n=1}^{\infty}$ of real-valued functions on a set E converges uniformly to some function iff given $\varepsilon > 0$, there exists an $N \in I$ such that

$$|f_m(x) - f_n(x)| < \varepsilon \quad (m, n \ge N, x \in E).$$

2. (a) Let $\{f_n\}_{n=1}^{\infty} \in \mathcal{R}[a, b]$ and $f_n \to f \in \mathcal{R}[a, b]$ pointwise. Then show by an example that

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx \neq \int_{a}^{b} f(x) dx,$$

holds.

(b) Let $\{f_n\}_{n=1}^{\infty} \in \mathcal{R}[a,b], f \in [a,b]$ and $f_n \to f$ uniformly. Then show that $f \in \mathcal{R}[a,b]$ and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx.$$

3. Test whether the following integrals are convergent:

(a)
$$\int_{-\infty}^{\infty} \left[\frac{(1+x)}{(1+x^2)} \right] dx$$

(b)
$$\int_{0}^{\infty} \frac{1}{(x^2 + \sqrt{x})} dx$$

(c)
$$\int_{0}^{1} \frac{\left[\log(\frac{1}{x})\right]}{\sqrt{x}} dx$$

- 4. (a) Let (M, ρ) be a metric space. Prove that a subset A of M is totally bounded iff every sequence of points of A contains a Cauchy subsequence.
 - (b) If (M, ρ) is a complete metric space and A is a closed subset of M, then show that (A, ρ) is also complete.
 - (c) If A is a closed subset of a compact metric space (M, ρ) , then prove that (A, ρ) is also compact.

PART B: COMPLEX ANALYSIS

1. Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for 1 < |z-2| < 2.

2. Use the Residue Theorem to evaluate

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+4)^3} \, dx.$$

- 3. Suppose that f is analytic and 1-1 on the open unit disk $\mathbf{D} = \{z \in \mathbf{C} : |z| < 1\}$. If $f(z) = \sum_{n=1}^{\infty} a_n z^n$, prove that Area $f(\mathbf{D}) = \pi \sum_{n=1}^{\infty} n |a_n|^2$.
- 4. (a) If $f(z) = \frac{z}{(z^2+2)}$, find the maximum value of |f(z)| for $|z| \le 1$.
 - (b) Suppose that g(z) is entire and that the harmonic function v(x, y) = Im[g(z)] satisfies $v(x, y) \leq 1$ for all points (x, y) in the xy-plane. Show that v(x, y) must be constant throughout the plane.