1. A pdf is defined by

$$f_{X,Y}(x,y) = \begin{cases} C(x+2y), & 0 < y < 1 \text{ and } 0 < x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the value of the constant C.
- (b) Find the marginal pdf $f_X(x)$.
- (c) Find the joint cdf $F_{X,Y}(x,y)$.
- (d) Find $E\left[\frac{9}{(X+1)^2}\right]$.

2. Suppose X_i 's $(1 \le i \le n)$ are i.i.d with $N(0, \sigma^2)$

$$f(x|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \ (-\infty < x < \infty, \sigma > 0).$$

- (a) Find a complete and sufficient statistic for σ^2 .
- (b) Find the UMVU estimator of σ .
- (c) Find a UMP level α test for $H_0: \sigma^2 \geq \sigma_0^2$ vs $H_a: \sigma^2 < \sigma_0^2$.

- 3. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution with σ^2 known. Let $U_i = \frac{X_i \mu}{\sigma}$ for $i = 1, \ldots, n$.
 - (a) Are $U_1^2 + U_2^2$ and $\frac{U_1}{\sqrt{U_1^2 + U_2^2}}$ independent? Explain your reasoning.
 - (b) Let $Y = \sin^{-1} \frac{U_1}{\sqrt{U_1^2 + U_2^2}}$. Find the distribution of Y. Also find E(Y) and Var(Y).
 - (c) Find the distribution of $Z = \tan Y$.
 - (d) Find the distribution of $V = \frac{U_1}{U_2}$.
 - (f) Find the uniformly most powerful size α critical region for testing H_0 : $\mu = \mu_0$ against alternatives $H_1 : \mu < \mu_0$.
 - (g) Find the uniformly most accurate level 1α U.C.B. for μ .
- 4. Suppose that X_1, \ldots, X_n $(n \geq 3)$ are independently and identically distributed according to the uniform distribution $U(0, \theta)$.
 - (a) Find the UMVU estimator of θ^{-1} . Also determine the variance and the mean squared error (MSE) of the UMVU estimator of θ^{-1} .
 - (b) Find the maximum likelihood estimator (MLE) of θ^{-1} . Also determine the bias, the variance, and the mean squared error (MSE) of the MLE estimator of θ^{-1} .
 - (c) Compare the performance of the UMVU estimator in part (a) and the maximum likelihood estimator in part (b) in terms of mean squared error.