MA exam: algebra, 19 April 2008

Please do four problems, including one from each of the three sections. Give complete proofs — do not just quote a theorem. Please indicate clearly which four problems you want to be graded.

Part I: Group theory

- **1.** Let G be the symmetric group of degree 11, and let $g_1 = (1,3,9)(2,8,5,7), g_2 = (2,5)(3,4,7,11,6,8).$
 - a. Compute $|g_1|$ and $|g_2|$.
 - b. Compute $g_1 g_2 g_1^{-1}$.
 - c. Are g_1 and g_2 conjugate in G? Prove your assertion.
- **2.** Suppose that G is a finite group, and $\phi: G \to H$ is a group homomorphism. Let p be a prime.
 - a. Prove that if S is a p-subgroup of G then $\phi(S)$ is a p-subgroup of H.
 - b. Prove that if ϕ is surjective (onto) and S is a Sylow p-subgroup of G then $\phi(S)$ is a Sylow p-subgroup of H.

Part II: Ring theory

3. Let $R = \{a + 3bi \mid a, b \in \mathbb{Z}\}.$

- a. Prove that R is an integral domain.
- b. Prove that R is not a unique factorization domain.
- **4.** Let *R* be the subset of 2×2 real matrices which commute with the matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
 - a. Prove that R is a ring.
 - b. Prove that $R \cong \mathbb{R}[x]/I$, where I is the ideal generated by x^2 .

Part III: Linear algebra

- 5. Let V and W be be finite-dimensional vector spaces over the field K.
 - a. Prove that if $T: V \to W$ is a linear transformation then $\ker(T)$ is a subspace of V. [Recall that $\ker(T) = \{v \in V \mid T(v) = 0\}.$]
 - b. Prove that if A and B are linear transformations from V to itself then $\dim \ker(AB) \leq \dim \ker(A) + \dim \ker(B)$.
 - c. Give an example of linear transformations A and B such that the inequality in part c is strict.
- **6.** Let A be the 4×4 real matrix

$$\begin{bmatrix} 0 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

- a. Find the characteristic equation of A and the eigenvalues of A.
- b. Find a basis for each eigenspace of A.
- c. Is A diagonalizable? If it is, diagonalize it. If not, explain why not.