M.S. and M.A. Comprehensive Analysis Exam Real and Complex Analysis
 Spring 2009

Željko Čučković

To obtain full credit you must show all your work

Part 1. Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Let $x_{1}=0$ and $x_{n+1}=\frac{x_{n}+1}{2}$ for $n \geq 1$.
(a) Use induction to show that $x_{n}<1$ for all n.
(b) Show that the sequence $\left\{x_{n}\right\}$ is increasing.
(c) Find the limit of the sequence.
2. Let $f_{n}(x)=\frac{1}{n x+1}, x \geq 0$.
(a) Find the pointwise limit of the sequence.
(b) Show that if $a>0$, then the convergence of the sequence is uniform on the interval $(a,+\infty)$.
(c) Show that the convergence is not uniform on the interval $[0,+\infty)$.
3. (a) State the definition: $f(x)$ is Riemann integrable on $[a, b]$.
(b) Let $f(x)=\left\{\begin{array}{ll}1, & \text { if } x \in[1,2] ; \\ 0, & \text { if } x \in[0,1) .\end{array}\right.$. Use the definition to prove that f is integrable on $[0,2]$.
(c) What is $\int_{0}^{2} f(x) d x$?
4. Let (M, d) be a metric space and let $B \subset M$.
(a) Show that the closure of $B=\{x \mid$ dist $(x, B)=0\}$.
(b) Show that the diameter of $B=$ diameter of \bar{B}.
5. (a) Determine if the given series converge. Explain your answer.
(i) $\sum_{n=1}^{\infty} \frac{3^{n}}{(n+1)!}$
(ii) $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{n^{5}+3 n^{3}-1}}$
(b) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+2) 5^{n}}(x-2)^{n}$.

Part 2. Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. (a) Evaluate completely the complex number $(1+i)^{3+4 i}$.
(b) Describe geometrically the set of points $z \in \mathbb{C}$ such that $|z+2 a|=|2 z+a|$ for $a \in \mathbb{C}$.
2. Use residues to find $\int_{0}^{2 \pi} \frac{d \theta}{k+\sin \theta}, k>1$.
3. Expand $f(z)=\frac{1}{(z-1)^{2}(z-3)}$ in a Laurent series valid for:
(a) $0<|z-1|<2$
(b) $0<|z-3|<2$
4. Let f and g be two analytic functions defined on the open unit disk \mathbb{D} in the complex plane. Suppose that $f(z)+\overline{g(z)}$ is real for all $z \in \mathbb{D}$. Prove that $f-g$ is constant.
5. (a) Evaluate $\int_{C} \frac{\cos z}{(z-1)^{3}(z-5)^{2}} d z$, where C is the circle $|z-4|=2$.
(b) Investigate the analyticity of $f(z)=r^{2} \cos ^{2} \theta+i r^{2} \sin ^{2} \theta$ for $z=r e^{i \theta} \neq 0$.
