M.S. and M.A. Comprehensive Analysis Exam Real and Complex Analysis Spring 2009

Željko Čučković

Harvey Wolff

To obtain full credit you must show all your work

Part 1. Real Analysis

100% will be obtained for *complete* answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Let $x_1 = 0$ and $x_{n+1} = \frac{x_n + 1}{2}$ for $n \ge 1$.

(a) Use induction to show that $x_n < 1$ for all n.

(b) Show that the sequence $\{x_n\}$ is increasing.

(c) Find the limit of the sequence.

2. Let $f_n(x) = \frac{1}{nx+1}, x \ge 0.$

(a) Find the pointwise limit of the sequence.

(b) Show that if a > 0, then the convergence of the sequence is uniform on the interval $[a, +\infty)$.

- (c) Show that the convergence is not uniform on the interval $[0, +\infty)$.
- 3. (a) State the definition: f(x) is Riemann integrable on [a, b].
- (b) Let $f(x) = \begin{cases} 1, & \text{if } x \in [1, 2]; \\ 0, & \text{if } x \in [0, 1). \end{cases}$ Use the definition to prove that f is integrable on [0, 2]. (c) What is $\int_0^2 f(x) dx$?

- 4. Let (M, d) be a metric space and let $B \subset M$.
- (a) Show that the closure of $B = \{x | \text{ dist } (x, B) = 0\}$.
- (b) Show that the diameter of B = diameter of \overline{B} .
- 5. (a) Determine if the given series converge. Explain your answer.

(i)
$$\sum_{n=1}^{\infty} \frac{3^n}{(n+1)!}$$

(ii) $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^5 + 3n^3 - 1}}$

(b) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+2)5^n} (x-2)^n$.

Part 2. Complex Analysis

100% will be obtained for *complete* answers to four questions. Indicate clearly which four questions you wish to be graded.

1. (a) Evaluate completely the complex number $(1+i)^{3+4i}$.

(b) Describe geometrically the set of points $z \in \mathbb{C}$ such that |z + 2a| = |2z + a| for $a \in \mathbb{C}$.

2. Use residues to find
$$\int_0^{2\pi} \frac{d\theta}{k+\sin\theta}$$
, $k > 1$.

3. Expand f(z) = 1/(z-1)²(z-3) in a Laurent series valid for:
(a) 0 < |z-1| < 2
(b) 0 < |z-3| < 2

4. Let f and g be two analytic functions defined on the open unit disk \mathbb{D} in the complex plane. Suppose that $f(z) + \overline{g(z)}$ is real for all $z \in \mathbb{D}$. Prove that f - g is constant.

5. (a) Evaluate $\int_C \frac{\cos z}{(z-1)^3(z-5)^2} dz$, where C is the circle |z-4| = 2. (b) Investigate the analyticity of $f(z) = r^2 \cos^2 \theta + ir^2 \sin^2 \theta$ for $z = re^{i\theta} \neq 0$.