MA exam: algebra, 17 April 2010

Please do four problems, including one from each of the three sections. Give complete proofs — do more than simply quote a theorem. Please indicate clearly which four problems you want to be graded.

Part I: Group theory

- 1. A group (not necessarily finite) is said to be *simple* if it contains no proper non-trivial normal subgroups.
 - a. Prove that a simple abelian group is finite and cyclic of prime order.
 - b. If G and H are groups, G is simple and $f: G \to H$ is a non-trivial group homomorphism, prove that H contains a subgroup isomorphic to G.
- **2.** Let G be a finite group and assume that H and K are subgroups of G such that the order of H and the index of K in G are relatively prime.
 - a. If K is a normal subgroup of G, prove that $H \leq K$.
 - b. Show by example that the conclusion of part (a) is not valid if the hypothesis that K is normal in G is omitted.

Part II: Ring theory

- **3.** An element a of a ring is said to be *nilpotent* if $a^k = 0$ for some positive integer k.
 - a. If p is a prime and m is a fixed positive integer, prove that every element of the ring $\mathbb{Z}/(p^m)$ is either a unit or a nilpotent element.
 - b. Characterize those integers n for which the ring $\mathbb{Z}/(n)$ has no non-zero nilpotent elements.
- **4.** Let $f(x) = x^4 + 6x + 2 \in \mathbb{Q}[x]$, where \mathbb{Q} is the field of rational numbers, and let I = (f(x)) be the ideal of $\mathbb{Q}[x]$ generated by f(x). Let $K = \mathbb{Q}[x]/(f(x))$ and let $\alpha = x + I \in K = \mathbb{Q}[x]/(f(x))$
 - a. Prove that K is a field that contains a subfield isomorphic to \mathbb{Q} and a root of f(x).
 - b. Find a polynomial $p(x) \in \mathbb{Q}[x]$ such that $\alpha^{-1} = p(\alpha)$.

Part III: Linear algebra

- **5.** Let V be an n-dimensional vector space over the real numbers \mathbb{R} .
 - a. Prove that every 1-dimensional subspace of V is the intersection of all of the n-1-dimensional subspaces that contain it.
 - b. If $T: V \to V$ is a linear transformation such that $T(W) \subseteq W$ for every n-1-dimensional subspace W of V, prove that T is a scalar transformation (i.e. prove that T=cI for some $c \in \mathbb{R}$, where I is the identity transformation).
- **6.** Let A be a 3×3 matrix over the field \mathbb{R} of real numbers and suppose that tr(A) = 6, $tr(A^2) = 14$ and det(A) = 6. Prove that A is similar to the diagonal matrix

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right).$$