Masters Comprehensive Exam
 Real and Complex Analysis
 April 16, 2011

Examiners: Željko Čučković, Denis White

To obtain full credit you must show all your work

Part 1. Real Analysis. Answer 4 of the 6 questions in Part 1. If you answer more questions then indicate which you wish to be considered.
(1) Suppose that f is Riemann integrable on $[a, b]$ and $g=f$ except at one point $c \in[a, b]$. Prove that g is Riemann integrable on $[a, b]$ and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x
$$

(2) (a) Define continuity for $f:[a, b] \rightarrow \mathbb{R}$.
(b) Suppose that f, g are continuous on $[a, b]$ and define

$$
\begin{aligned}
h(x) & =\min \{f(x), g(x)\} \\
H(x) & =\max \{f(x), g(x)\}
\end{aligned}
$$

for all $x \in[a, b]$. Show that h and H are continuous on $[a, b]$.
(3) (a) Define the convergence of a sequence in a metric space (X, d).
(b) Show that every convergent sequence of real numbers has a monotone subsequence that converges to the same limit.
(4) Suppose that $f:[1, \infty) \rightarrow \mathbb{R}$ is a continuous function and $\lim _{x \rightarrow \infty} f(x)=A$. Show that

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{1}^{t} f(x) d x=A
$$

(5) Define the function

$$
f(x)=\frac{2 x}{1+x^{2}}
$$

and let $f_{n}(x)=f(n x)$.
(a) Show that the sequence f_{n} converges to 0 uniformly on the interval $[1, \infty)$
(b) Does the sequence f_{n} converge to 0 on $[0,1]$? Is the convergence uniform?
(6) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, $f(0)=0$, and $f^{\prime}(x)>f(x)$ for all $x \in \mathbb{R}$. Prove that $f(x)>0$ for $x>0$.
Part 2. Complex Analysis. Answer 4 of the 5 questions in Part 2. If you answer more questions then indicate which you wish to be considered.
(1) (a) The symbol i^{i} is infinitely many valued. Find these values. They are all real positive.
(b) Solve the transcendental equation $\cos z=\sqrt{3}$
(2) Show that $u(x, y)=6 x^{2} y+6 x y-2 y^{3}$ is harmonic. Then find a function $v(x, y)$ so that $f(x+i y)=u(x, y)+i v(x, y)$ is analytic.
(3) Write the Laurent series in powers of z that represents the function

$$
f(z)=\frac{z-1}{z\left(z^{2}+1\right)}
$$

in certain domains and specify those domains.
(4) (a) Evaluate the integral $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$
(b) By integrating $\frac{e^{i z}}{z}$ over a suitable contour, evaluate

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

(5) Evaluate the contour integrals. Here C is the circle $\{z:|z-i|=1\}$ oriented counterclockwise.
(a) $\int_{C} e^{z^{2}}+z^{4}+\frac{z^{3}+4 z}{2 z-i}+\frac{1}{z^{2}+1} d z$
(b) $\int_{|z|=1}^{C} \frac{1}{z-\sin z} d z$

