## MA exam: Algebra

20 April 2013

Please do four problems, including one from each of the three sections. Give complete proofs — do more than simply quote a theorem. Please indicate clearly which four problems you want to be graded.

## Part I: Group theory

- **1.** Let G be an arbitrary group (not necessarily finite) and let p > 0 be a prime. Suppose  $x \in G$  is an element of finite order  $n = p^k m$  where m is prime to p (i.e., m is not divisible by p).
  - (a) Show that x = yz = zy for some  $y, z \in G$ , where y and z both have finite order, the order of y is a power of p, and the order of z is prime to p.
  - (b) Keeping the notation of part (a), suppose that p = 2, k = 3, and m = 15 (so  $n = 2^3 15 = 120$ ). Find a pair of y and z as guaranteed in part (a), expressing them as powers of x.
- **2.** Let G be a finite group and assume that H and K are subgroups of G such that the product of the orders of H and K is strictly greater than the order of G.
  - (a) Prove that  $H \cap K \neq \{1\}$  where  $1 \in G$  is the identity element.
  - (b) Now suppose that K is a normal subgroup of G. What is the smallest possible order (in terms of the orders of H, K, and G) that  $H \cap K$  could have?

## Part II: Ring theory

- **3.** An element a of a ring is said to be *nilpotent* if  $a^k = 0$  for some positive integer k.
  - (a) Suppose that n > 1 is an integer and that every element of the ring  $\mathbb{Z}/n\mathbb{Z}$  is either a unit or a nilpotent element. Prove that  $n = p^m$  for some prime p and positive integer m.
  - (b) If p is a prime and m is a fixed positive integer, does the ring  $\mathbb{Z}/p^m\mathbb{Z}$  have more units or more nilpotent elements? How many of each?
- **4.** Let  $g(x) = x^3 + 3x + 2 \in F[x]$ , where  $F = \mathbb{Z}/7\mathbb{Z}$  is the finite field with seven elements, and let I = (g(x)) be the ideal of F[x] generated by g(x). Let K = F[x]/(g(x)) and let  $\alpha = x + I \in K = F[x]/(g(x))$ .
  - (a) Prove that K is a field that contains a subfield isomorphic to F and a root of g(x).
  - **(b)** Find a polynomial  $p(x) \in F[x]$  such that  $\alpha^{-1} = p(\alpha)$ .

## Part III: Linear algebra

- **5.** (a) Let V and W be vector spaces and let T be a linear operator from V into W. Suppose that V is finite-dimensional. Prove  $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$ .
  - (b) Let S be the linear operator defined on the space of  $3 \times 3$  real matrices given by,

$$S(A) = A + A^t,$$

where  $A^t$  denotes the transpose of the matrix A. Determine the rank of S.

**6.** Let A be the  $4 \times 4$  real matrix

$$\begin{pmatrix}
0 & 4 & 2 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

- (a) Find the characteristic polynomial of A and the eigenvalues of A.
- (b) Find a basis for each eigenspace of A.
- (c) Find J, the Jordan canonical form of A.
- (d) Find an invertible P such that AP = PJ.