M.S and M.A Comprehensive Analysis Exam

Željko Čučković and Sönmez Şahutoğlu

April 2013

To get full credit you must show all your work.

This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

- 1. (a) Define the supremum of a bounded set $A \subset \mathbb{R}$.
 - (b) Let *A* and *B* be two bounded sets in \mathbb{R} . Show that $\sup(A + B) = \sup A + \sup B$.
- 2. (a) Define a convergent sequence in \mathbb{R} .
 - (b) Define a Cauchy sequence in \mathbb{R} .
 - (c) Let $\{x_n\}$ be a Cauchy sequence in \mathbb{R} . Show that $\{x_n\}$ is convergent if and only if it has a convergent subsequence.
- 3. (a) Define uniformly continuous functions on \mathbb{R} .
 - (b) Give an example of a continuous function $f : (0, 1) \to \mathbb{R}$ that is not uniformly continuous.
 - (c) Let $f : (0,1) \to \mathbb{R}$ be a bounded continuous function. Show that g(x) = x(x-1)f(x) is uniformly continuous on (0,1).
- 4. Use the definition of Riemann integration to find the $\int_0^1 (x-1)dx$.
- 5. Let $X = \{a, b, c\}$ be a set of three points and $(\alpha, \beta) \in \mathbb{R}^2$. Define $d_{\alpha\beta}$ as a function on $X \times X$ so that $d_{\alpha\beta}(a, b) = 1$, $d_{\alpha\beta}(b, c) = \alpha$, $d_{\alpha\beta}(c, a) = \beta$. Find all possible (α, β) so that $d_{\alpha\beta}$ is a metric.
- 6. (a) Define compact subset of a metric space.
 - (b) Use the definition of compactness to show that the interval $(0, 1) \subset \mathbb{R}$ is not compact.
 - (c) Let (*X*, *d*) be a compact metric space. Use the definition of compactness to show that every bounded sequence in *X* has a subsequence convergent in *X*.

Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

- 1. Find an analytic mapping that maps the domain $\{z \in \mathbb{C} : -\pi < \text{Im}(z) < 3\pi\}$ onto the lower half plane $\{z \in \mathbb{C} : \text{Im}(z) < 0\}$.
- 2. Let $C_{\rho} = \{z \in \mathbb{C} : |z| = \rho\}$ for $0 < \rho < 1$ oriented in the counterclockwise direction. Suppose that f(z) is continuous on the disk $\{z \in \mathbb{C} : |z| < 1\}$. Show that

$$\lim_{\rho \to 0^+} \int_{C_\rho} \frac{f(z)}{z^{\frac{1}{2}}} dz = 0$$

where $z^{\frac{1}{2}}$ is the principal branch.

- 3. Expand $f(z) = \frac{z}{(z+1)(z-1)^2}$ in a Laurent series valid for $\{z \in \mathbb{C} : 0 < |z-1| < 2\}$.
- 4. Evaluate the integral $\int_{-\infty}^{\infty} \frac{1}{(x^2+4)^4} dx$.
- 5. (a) State the Maximum modulus principle for analytic functions.
 - (b) Let $f(z) = \frac{z^4}{z^2 + 10}$. Find the maximum value of |f(z)| on $\{z \in \mathbb{C} : |z| \le 2\}$.
- 6. Find an entire function whose imaginary part is $v(x, y) = x^2 y^2 + 2$.