M.S and M.A Comprehensive Analysis Exam

Željko Čuc̆ković and Sönmez Şahutoğlu

April 2013
To get full credit you must show all your work.
This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. (a) Define the supremum of a bounded set $A \subset \mathbb{R}$.
(b) Let A and B be two bounded sets in \mathbb{R}. Show that $\sup (A+B)=\sup A+\sup B$.
2. (a) Define a convergent sequence in \mathbb{R}.
(b) Define a Cauchy sequence in \mathbb{R}.
(c) Let $\left\{x_{n}\right\}$ be a Cauchy sequence in \mathbb{R}. Show that $\left\{x_{n}\right\}$ is convergent if and only if it has a convergent subsequence.
3. (a) Define uniformly continuous functions on \mathbb{R}.
(b) Give an example of a continuous function $f:(0,1) \rightarrow \mathbb{R}$ that is not uniformly continuous.
(c) Let $f:(0,1) \rightarrow \mathbb{R}$ be a bounded continuous function. Show that $g(x)=x(x-1) f(x)$ is uniformly continuous on $(0,1)$.
4. Use the definition of Riemann integration to find the $\int_{0}^{1}(x-1) d x$.
5. Let $X=\{a, b, c\}$ be a set of three points and $(\alpha, \beta) \in \mathbb{R}^{2}$. Define $d_{\alpha \beta}$ as a function on $X \times X$ so that $d_{\alpha \beta}(a, b)=1, d_{\alpha \beta}(b, c)=\alpha, d_{\alpha \beta}(c, a)=\beta$. Find all possible (α, β) so that $d_{\alpha \beta}$ is a metric.
6. (a) Define compact subset of a metric space.
(b) Use the definition of compactness to show that the interval $(0,1) \subset \mathbb{R}$ is not compact.
(c) Let (X, d) be a compact metric space. Use the definition of compactness to show that every bounded sequence in X has a subsequence convergent in X.

Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Find an analytic mapping that maps the domain $\{z \in \mathbb{C}:-\pi<\operatorname{Im}(z)<3 \pi\}$ onto the lower half plane $\{z \in \mathbb{C}: \operatorname{Im}(z)<0\}$.
2. Let $C_{\rho}=\{z \in \mathbb{C}:|z|=\rho\}$ for $0<\rho<1$ oriented in the counterclockwise direction. Suppose that $f(z)$ is continuous on the disk $\{z \in \mathbb{C}:|z|<1\}$. Show that

$$
\lim _{\rho \rightarrow 0^{+}} \int_{C_{\rho}} \frac{f(z)}{z^{\frac{1}{2}}} d z=0
$$

where $z^{\frac{1}{2}}$ is the principal branch.
3. Expand $f(z)=\frac{z}{(z+1)(z-1)^{2}}$ in a Laurent series valid for $\{z \in \mathbb{C}: 0<|z-1|<2\}$.
4. Evaluate the integral $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+4\right)^{4}} d x$.
5. (a) State the Maximum modulus principle for analytic functions.
(b) Let $f(z)=\frac{z^{4}}{z^{2}+10}$. Find the maximum value of $|f(z)|$ on $\{z \in \mathbb{C}:|z| \leq 2\}$.
6. Find an entire function whose imaginary part is $v(x, y)=x^{2}-y^{2}+2$.

