M.S and M.A Comprehensive Analysis Exam

Željko Čučković and Sönmez Şahutoğlu

April 2014

To get full credit you must show all your work.

This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. (a) Define the supremum of a bounded set $A \subset \mathbb{R}$.
(b) Let A and B be bounded subsets of real numbers. Show that

$$
\sup (A \cup B)=\max \{\sup A, \sup B\}
$$

2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{a}^{b} f(x) d x=0$ for all $0 \leq a \leq b \leq 1$. Show that $f=0$.
3. (a) Define uniformly continuous functions on \mathbb{R}.
(b) Show that $f:(0,1) \rightarrow \mathbb{R}$ defined by $f(x)=\sin (1 / x)$ is not uniformly continuous.
(c) Show that $g:(0,1) \rightarrow \mathbb{R}$ defined by $g(x)=x \sin (1 / x)$ is uniformly continuous on $(0,1)$.
4. Prove the root test for series.
(a) Show that if $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(b) Give two examples of series $\sum_{n=1}^{\infty} c_{n}$ and $\sum_{n=1}^{\infty} d_{n}$ so that

$$
\lim _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty}\left|d_{n}\right|^{1 / n}=1
$$

yet $\sum_{n=1}^{\infty} c_{n}$ is convergent while $\sum_{n=1}^{\infty} d_{n}$ is divergent.
5. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Show that there exists $c \in[0,1]$ such that $f(c)=c$.
6. (a) Define compact subset of real numbers.
(b) Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$. Using the definition of compactness to prove that S is a compact set.
(c) Is $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ compact? Prove your assertion.

Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Find the image of line line $y=x$ under the mapping $f(z)=z^{2}-1$.
2. Let C denote the unit circle with counter-clockwise orientation. Compute the integral

$$
\oint_{C} \frac{e^{z^{2}}}{z^{2}} d z
$$

3. Expand $f(z)=\frac{z^{2}}{(z+1)\left(z^{2}-1\right)}$ in a Laurent series valid for $\{z \in \mathbb{C}: 0<|z-1|<2\}$.
4. Evaluate the integral $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{2}\left(x^{2}+2 x+2\right)}$.
5. Evaluate the line integral $\int_{C} z^{1 / 2} d z$ where C is the positively oriented semicircular curve $z=e^{i \theta}$ for $-\pi / 2 \leq \theta \leq \pi / 2$ and $z^{1 / 2}$ is defined with the standard branch cut $|\operatorname{Arg}(z)|<\pi$.
6. Let u and v be real valued functions continuously differentiable functions on a domain Ω. Assume that u is harmonic conjugate of v and v is harmonic conjugate of u on Ω. Show that both u and v are constant functions.
