M.S. and M.A. Comprehensive Analysis Exam

Željko Čučković and Sönmez Şahutoğlu

April 2015

To get full credit you must show all your work.

This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. (a) Define the supremum of a bounded set $A \subset \mathbb{R}$.
(b) Let $A=\left\{\frac{1}{n}-\frac{1}{m}: n, m=1,2,3, \ldots\right\}$. Find sup A. Prove your claim.
2. (a) Define a uniformly continuous function on \mathbb{R}.
(b) Use the definition to show that $f(x)=\frac{1}{x+1}$ is uniformly continuous on $[0, \infty)$.
3. (a) Let f be a bounded function on $[a, b]$. Define the Riemann integral $\int_{a}^{b} f$.
(b) Use the definition of Riemann integration to compute $\int_{-1}^{1} f$ for $f(x)=\left\{\begin{array}{ll}0 & -1 \leq x \leq 0 \\ x+1 & 0<x \leq 1\end{array}\right.$.
4. Let $x_{n} \geq 0$ for all n and suppose that $\lim _{n \rightarrow \infty}(-1)^{n} x_{n}$ exists. Show that $\lim _{n \rightarrow \infty} x_{n}=0$.
5. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$ be a continuous function. Show that if X is connected, then $f(X)$ is connected.
6. Suppose that (X, d) is a complete metric space and $\left\{E_{j}: j \in \mathbb{N}\right\}$ is a collection of nonempty compact sets in X such that $E_{1} \supset E_{2} \supset E_{3} \supset \cdots$. Show that $\bigcap_{j=1}^{\infty} E_{j} \neq \varnothing$.

Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Find the image of the square $\{x+i y: 0 \leq x \leq \ln 2,0 \leq y \leq \pi\}$ under the mapping $e^{2 z}$.
2. Let C denote the unit circle with counter-clockwise orientation. Compute the integral

$$
\oint_{C} \operatorname{Re}(z) \bar{z} d z
$$

3. Expand $f(z)=\frac{1}{z^{2}-1}$ in a Laurent series valid for $\{z \in \mathbb{C}: 0<|z-1|<2\}$.
4. Evaluate the integral $\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x$.
5. Find an entire function whose imaginary part is $v(x, y)=x^{2}-y^{2}+2$.
6. (a) State Maximum Modulus Principle for analytic functions.
(b) Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk and $u: \mathbb{D} \rightarrow \mathbb{R}$ be a harmonic function. Show that if u attains a maximum (or minimum) in \mathbb{D} then it is constant. (Hint: use Maximum Modulus Principle for analytic functions.)
