M.S. and M.A. Comprehensive Analysis Exam

Željko Čučković and Sönmez Şahutoğlu

April 2015

To get full credit you must show all your work.

This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

- 1. (a) Define the supremum of a bounded set $A \subset \mathbb{R}$.
 - (b) Let $A = \left\{\frac{1}{n} \frac{1}{m} : n, m = 1, 2, 3, \ldots\right\}$. Find sup *A*. Prove your claim.
- 2. (a) Define a uniformly continuous function on \mathbb{R} .
 - (b) Use the definition to show that $f(x) = \frac{1}{x+1}$ is uniformly continuous on $[0, \infty)$.
- 3. (a) Let *f* be a bounded function on [a, b]. Define the Riemann integral $\int_a^b f$.
 - (b) Use the definition of Riemann integration to compute $\int_{-1}^{1} f$ for $f(x) = \begin{cases} 0 & -1 \le x \le 0 \\ x+1 & 0 < x \le 1 \end{cases}$.
- 4. Let $x_n \ge 0$ for all n and suppose that $\lim_{n\to\infty} (-1)^n x_n$ exists. Show that $\lim_{n\to\infty} x_n = 0$.
- 5. Let $(X, d_X), (Y, d_Y)$ be metric spaces and $f : X \to Y$ be a continuous function. Show that if X is connected, then f(X) is connected.
- 6. Suppose that (X, d) is a complete metric space and $\{E_j : j \in \mathbb{N}\}$ is a collection of nonempty compact sets in X such that $E_1 \supset E_2 \supset E_3 \supset \cdots$. Show that $\bigcap_{j=1}^{\infty} E_j \neq \emptyset$.

Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

- 1. Find the image of the square $\{x + iy : 0 \le x \le \ln 2, 0 \le y \le \pi\}$ under the mapping e^{2z} .
- 2. Let C denote the unit circle with counter-clockwise orientation. Compute the integral

$$\oint_C \operatorname{Re}(z)\overline{z}dz$$

- 3. Expand $f(z) = \frac{1}{z^2 1}$ in a Laurent series valid for $\{z \in \mathbb{C} : 0 < |z 1| < 2\}$.
- 4. Evaluate the integral $\int_0^\infty \frac{1}{(1+x^2)^2} dx$.
- 5. Find an entire function whose imaginary part is $v(x, y) = x^2 y^2 + 2$.
- 6. (a) State Maximum Modulus Principle for analytic functions.
 - (b) Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk and $u : \mathbb{D} \to \mathbb{R}$ be a harmonic function. Show that if *u* attains a maximum (or minimum) in \mathbb{D} then it is constant. (Hint: use Maximum Modulus Principle for analytic functions.)