MA exam: Algebra, 22 April 2017

DIRECTIONS: Do all of the six problems. Your best five answers will determine your grade. Give complete proofs — do not just quote a theorem.

NOTATION: \mathbb{C} denotes the complex numbers, \mathbb{R} the reals, and \mathbb{Z} the integers.

CAVEAT: The examiners have made every effort to make sure that the problems are correct. However, if you are convinced that a problem contains a misprint, explain why you think so, formulate a correct and non-trivial version of the problem, and do that instead.

Part I: Group theory

1. This problem concerns S_{13} , the symmetric group on 13 letters, where we write our functions on the left. Let

$$g_1 = (1,3,9)(2,8,5,7,10,12,13,4,6,11)$$

 $g_2 = (2,5,14,9,12)(3,4,7,11,6,8).$

- (a) Compute the orders $|g_1|$ and $|g_2|$.
- (b) Compute the group element $g_1g_2g_1^{-1}$.
- (c) Are g_1 and g_2 conjugate in S_{13} ? Prove your assertion.
- **2.** This problem concerns A_4 , the alternating group on four letters.
 - (a) Show that A_4 contains a normal subgroup of order 4.
 - (b) Prove of disprove: There is a homomorphism from A_4 onto $\mathbb{Z}/3\mathbb{Z}$, the group of integers modulo 3.
 - (c) Prove of disprove: There is a homomorphism from A_4 onto $\mathbb{Z}/4\mathbb{Z}$.
 - (d) Prove of disprove: There is a homomorphism from A_4 onto S_3 , the symmetric group on 3 letters.

Part II: Ring theory

- **3.** Prove that a finite integral domain is a field.
- **4.** Consider $\mathbb{Z}[x]$, the ring of polynomials having integer coefficients. Either prove that $\mathbb{Z}[x]$ is a principal ideal domain or prove that it is not.

Part III: Linear algebra

- **5.** Let V be a finite dimensional vector space over \mathbb{C} and $T:V\to V$ be a linear transformation satisfying the equation $T^4=I$.
 - (a) Prove that T can be represented by a diagonal matrix.
 - (b) Give an example to show that if V is a finite dimensional vector space over \mathbb{R} , and T is as above, then T need not be diagonalizable.
- **6.** Consider the 4×4 real matrix

$$A = \left(\begin{array}{cccc} 2 & 1 & -1 & 2 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

- (a) Find J, the Jordan canonical form of A.
- (b) Find an invertible matrix P so that AP = PJ.