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April 15, 2017
Alessandro Arsie and Denis White

This exam has two parts, (A) Real Analysis and (B) Complex Analysis. Do any four of
the six problems in part A and any three of the five problems in part B. Clearly indicate
which problems in each part are to be graded. Show the details of your work.

Part A: Real Analysis (Do any 4 of the 6 problems.)

1. (a) Suppose that an is a bounded, real sequence. Define lim supn an.

(b) Suppose that an and bn, n ∈ N are two bounded real sequences. Show that

lim sup
n

(an + bn) ≤ lim sup
n

an + lim sup
n

bn

(c) Further show, by example, that strict inequality lim supn an+bn < lim supn an+
lim supn bn is possible.

2. Suppose (fn) is a sequence of functions converging uniformly to zero on given
interval [a, b]. (We are not assuming the fn continuous!) Let (xn) be any con-
vergent sequence of points in [a, b]. Show that limn→∞ fn(xn) = 0. Using an
example show that this is false if fn → 0 only pointwise. Suppose instead now
that (fn) is a sequence of functions on an interval [a, b], with the property that
for any converging sequence of points (xn) in [a, b] we have limn→∞ fn(xn) = 0.
Show that indeed the convergence of (fn) to zero on [a, b] is uniform.

3. Let f : [0, 1] → R be a continuous function. Evaluate the following limits with
proof:

lim
n→+∞

∫ 1

0

xnf(x) dx lim
n→+∞

n

∫ 1

0

xnf(x) dx

4. Suppose that f : (0, 1)→ R is continuous. Prove or disprove.

(a) If f is uniformly continuous then f is bounded.

(b) If f is bounded then f is uniformly continuous.

(c) f(x) =
√
x is uniformly continuous on [0,∞).



5. Consider the map id : Cmax → Cint sending any f to itself, where Cmax is the
metric space C0([a, b],R) of continuous real valued functions equipped with the
maximum metric dmax(f, g) = max |f(x)− g(x)| and Cint is again the same space
but equipped with the metric

dint(f, g) =

∫ b

a

|f(x)− g(x)| dx.

Show that id is a continuous linear bijection but its inverse is not continuous.

6. a) State what it means for a function f : R2 → R to be differentiable at a point.
Consider now the function

f(x, y) =

{
x2y5

(x2+y2)3
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

b) Is f continuous at (0, 0)? c) Does it admit directional derivatives along any
direction at (0, 0)? d) Is it differentiable at (0, 0)?



Part B: Complex Analysis (Do any 3 of the 5 problems)

1. a) State a version of Rouché theorem. b) Let a ∈ C , |a| > e. Use Rouché
theorem to prove that the equation ez = azn has n solutions (not necessarily
distinct) in the open unit disk D := {z ∈ C : |z| < 1}.

2. Let H = {z = x+ iy : y > 0, x ∈ R} denote the upper halfplane. Determine the
image of H under the map z 7→ 1

z+1+i
and sketch the image.

3. Let Γ denote the positively oriented unit circle. Evaluate∫
Γ

1

z5 + 3z2 + 5
dz.

4. Find Laurent expansions for

f(z) =
4z

(z + 1)(z − 3)

valid in (a) {z : 1 < |z| < 3}; (b) {z : |z| > 3}.

5. Use the residue theorem to evaluate the integral. (Do Part a or Part b and not
both.)

(a)
∫∞

0

1

(x2 + 1)2
dx

(b)
∫ π

0

1

2 + cos θ
dθ


