Probability and Statistical Theory

MS Comprehensive Examination

April 14, 2018

Instructions:

Show all of your computations. Prove all of your assertions or quote the appropriate theorems. Books, notes, and calculators *may be used*.

You have three hours.

1. [25 pts] Suppose that A_1 and A_2 are independent uniform random variables on [0,1]. Let $X = \max\{A_1, A_2\}, Y = \min\{A_1, A_2\}$ and $Z = A_1 + A_2$. Compute the following:

- (a) The probability density function f_X
- (b) The expectation E(X).
- (c) The conditional expectation E(Y|X) (Hint: $P(Y \le y, X \le x) = P(X \le x) P(Y > y, X \le x))$
- (d) The covariance Cov(X, Y)
- (e) The probability density function f_Z .
- (f) The expectation E(Z) and variance Var(Z).
- (g) The covariance $Cov(A_1, Z)$ and correlation $\rho(A_1, Z)$

2. [25 pts] Let us have two independent random samples: $X_1, ..., X_n$ is a sample from $N(\mu_x, \sigma_x^2)$, and $Y_1, ..., Y_m$ is a sample from $N(\mu_y, \sigma_y^2)$

- (a) Write down a joint pdf for $\{X_1, ..., X_n, Y_1, ..., Y_m\}$
- (b) Find a 4-dimensional sufficient statistic.
- (c) Find the MLE of σ_x^2 and σ_y^2
- (d) Assume $\sigma_x^2 = \sigma_y^2 = \sigma^2$. Find the MLE for σ^2 .
- (e) Find a LR test statistic for testing $H_0: \sigma_x^2 = \sigma_y^2$

- 3. (50 points, 5 points each) $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta) = \frac{3x^2}{\theta} \exp\left(-\frac{x^3}{\theta}\right)$ for $x \ge 0$ and $\theta > 0$.
 - a. Find the distribution of $Y = \sum_{i=1}^{n} X_i^3$.
 - b. Find $\mathsf{E}Y$ and $\mathsf{Var}(Y)$.
 - c. Find a complete and sufficient statistic for $\theta.$
 - d. Find the maximum likelihood estimator $\hat{\theta}_{MLE}$ for θ .
 - e. Explain whether $\hat{\theta}_{MLE}$ is the UMVUE. If it is not, find the UMVUE $\tilde{\theta}$.
 - f. Calculate the variance of the UMVUE $\tilde{\theta}$.
 - g. Calculate the Cramér-Rao Lower Bound. Does the UMVUE $\hat{\theta}$ reach it?
 - h. Find a UMP level α test $\phi(T)$ for

$$H_0: \theta = \theta_0 \text{ vs } H_1: \theta > \theta_0.$$

Write the rejection region R of this test using the test statistic T and the quantile of a well-known distribution.

Consider $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

- i. Explain why a UMP level α test does not exist.
- j. Find the likelihood ratio test statistic Λ . Using the quantile of a well-known distribution, write the rejection region R of the likelihood ratio test so that its level is α .

Probability and Statistical Theory