# M.S. and M.A. Comprehensive Analysis Exam 

Željko Čučković and Trieu Le

April 13, 2019

## To get full credit you must show all your work.

This exam contains 6 real analysis and 6 complex variables questions.

## Real Analysis

$100 \%$ will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Define $f(x)= \begin{cases}0 & \text { if } x=0, \\ x^{3} \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 .\end{cases}$

Show that $f^{\prime}$ is continuous at 0 but $f^{\prime}$ is not differentiable at 0 .
2. (a) Let $f$ be a bounded function on $[a, b]$. Define the Riemann integral $\int_{a}^{b} f$.
(b) Define $g(x)= \begin{cases}-1 & \text { if } x \text { is irrational, } \\ x & \text { if } x \text { is rational. }\end{cases}$

Show that $g$ is not Riemann integrable on $[0,1]$.
3. (a) Define what it means that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on $\mathbb{R}$.
(b) Show that $f(x)=\sin (x)$ is uniformly continuous on $\mathbb{R}$.
(c) Show that $g(x)=\sin \left(x^{2}\right)$ is not uniformly continuous on $\mathbb{R}$.
4. Let $(X, d)$ be a metric space and define $\rho(x, y)=\frac{d(x, y)}{1+d(x, y)}$ for all $x, y \in X$. Show that $\rho$ is a metric on $X$.
5. For $n=1,2, \ldots$ and $0 \leq x \leq 1$, define $f_{n}(x)=x^{n}$.
(a) Fix $0<a<1$. Show that the sequence $\left\{f_{n}\right\}$ converges uniformly on $(0, a)$.
(b) Is there a subsequence $\left\{f_{n_{k}}\right\}$ that converges uniformly on $(0,1)$ ? Explain.
6. Let $(X, d)$ be a metric space and $f: X \rightarrow \mathbb{R}$ be a continuous function. If $X$ is compact, show that $f$ is uniformly continuous.

## Complex Analysis

$100 \%$ will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Let $f(z)=\frac{z-i}{z+i}$. Show that $f$ maps the upper half-plane $\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ into the unit $\operatorname{disk}\{z \in \mathbb{C}:|z|<1\}$.
2. Evaluate the following integral, where $C$ is the positively oriented circle centered at $(2,0)$ with radius 2 :

$$
\oint_{C} \frac{z e^{3 z}}{\left(z^{2}-1\right)^{2}} d z
$$

3. Expand $f(z)=\frac{z}{(z+i)(z-3)}$ in a Laurent series valid for $\{z \in \mathbb{C}: 1<|z|<3\}$.
4. Let $f(z)=u(x, y)+i v(x, y)$ be an analytic function in the open unit disk $\mathbb{D}=\{z \in \mathbb{C}$ : $|z|<1\}$. Assume that $u(x, y) \neq v(x, y)$ for all $(x, y) \in \mathbb{D}$. Find all such $f$ for which the function

$$
g(z)=[u(x, y)]^{2}+i[v(x, y)]^{2}
$$

is analytic in $\mathbb{D}$.
5. Evaluate the integral $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x$.
6. Find all possible entire functions $f$ with the property that $|f(z)| \leq 2|z|+1$ for all $z \in \mathbb{C}$. Prove that you have found all such functions.

