Fall 2003 Ph.D Qualifying Exam in Real Analysis

Time 3 hours, closed book, no notes. Answer three questions from each of the parts $A \ \mathcal{E} B$.

Part A

- 1. (The Ascoli-Arzela Theorem) Let X be a compact metric space and let C(X) be the normed linear space of real-valued continuous functions on X with the supremum norm.
 - (a) Define what it means for a subset $\mathcal{F} \subset C(X)$ to be an equi-continuous family.
 - (b) Prove that \mathcal{F} is totally bounded in C(X) if and only if
 - i. ${\mathcal F}$ is bounded and
 - ii. \mathcal{F} is an equi-continuous family.
- 2. (a) Consider the power series $f(x) = \sum_{k=0}^{\infty} a_k x^k$ and $g(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}$ where the sequence $\{a_k\}$ is bounded. Show
 - i. Both series converge uniformly on [-ρ, ρ] for any ρ, 0 < ρ < 1,
 ii. f'(x) = q(x) for -1 < x < 1.
 - 11. f(x) = g(x) for 1 < x < 1.
 - (b) Suppose $0 \le k \le |a_k| \le k^2$ for all k. What is the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k x^k$?
- 3. Suppose (X, d) is a compact metric space and that f is an isometry of X into itself(i.e., $f : X \to X$ with $d(f(x_1), f(x_2)) = d(x_1, x_2)$ for x_1, x_2 in X.) Clearly f is a 1–1 map(an injection). Show that f is an onto map(a surjection).[Hint: Take a point p outside f(X) if possible and look at the sequence of iterates $p, f(p), f(f(p)), \ldots$]
- 4. Let f(x) be continuous on [0, 1]. Show
 - (a) $\lim_{n \to \infty} \int_0^1 x^n f(x) dx = 0$,
 - (b) $\lim_{n \to \infty} \int_0^1 n x^n f(x) dx = f(1).$
- 5. Prove Egoroff's Theorem namely: Suppose (X, \mathcal{M}, μ) is a measure space and $\mu(X) < \infty$. Let $\{f_n\}$ be a sequence of measurable functions such that $f_n \to f$ (a.e.). Show that for any $\epsilon > 0$, there is a measurable set E with $\mu(E) < \epsilon$ such that $f_n \to f$ uniformly on $X \setminus E$.
- 6. Let $\phi_n(x) = \sqrt{n}e^{-n^2|x|}$ and let $f(x) = \sum_{n=0}^{\infty} \phi_n(x-r_n)$ where $\{r_n\}$ is an enumeration of rational numbers in \mathbb{R} . Show:
 - (a) $f(x) \in L^1(\mathbb{R})$ and compute $\int_{\mathbb{R}} f(x) dx$
 - (b) f(x) is unbounded in any open interval (a, b).

Part B

- 1. Let f(x) = 0 if $x \in [0, 1]$ is irrational and $f(x) = \frac{1}{q}$ if $x = \frac{p}{q}$ in lowest terms. Show: f(x) is continuous at every irrational point and discontinuous at every rational point in [0, 1].
- 2. Let $f_n(x) = (1+x^n)^{1/n}$, $0 \le x \le 2$, $n \in \mathbb{N}$. Show that $f_n(x) \Rightarrow f(x)$ uniformly on [0,2] as $n \to \infty$ where f(x) = 1 for $x \in [0,1]$ and x for $x \in [1,2]$.
- 3. (a) State carefully the Stone-Weierstrass Theorem.
 - (b) Prove that if f(x) is continuous in [0,1] and if $\int_0^1 x^{4n} f(x) dx = 0$ for $n = 0, 1, 2, \ldots$, then $f(x) \equiv 0$.
 - (c) Suppose $\int_0^1 x^k f(x) dx = 0$ for k odd. What can you say about f(x)?
- 4. Show that

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n}\right)^n dx = \lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx = 1.$$

- 5. Suppose that f, a function defined on an open interval (a, b), satisfies the intermediate value theorem i.e., if f assumes the values y_1, y_2 , it assumes all values between y_1, y_2 . Show that if f is not continuous, it assumes some value infinitely often.
- 6. State the definition of Riemann integrability and prove directly that any continuous function on a closed interval [a, b] is Riemann integrable.