Ph.D. Qualifying Exam

Fall 2004

Instructions:

- 1. If you think that a problem is incorrectly stated ask the proctor. If his explanation is not to your satisfaction, interpret the problem as you see fit, but not so that the answer is trivial.
- 2. From each part solve 3 of the 5 five problems.
- 3. If you solve more than three problems from each part, indicate the problems that you wish to have graded.

Part A

1. Suppose that $a_n > 0$, show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges.

2. Let A be a closed and bounded subset of $C_2([0,1])$, the twice continuously differentiable functions with the supremum norm. Show that A is precompact subset of $C_1([0,1])$.

3. Consider the closed unit ball B in $C_0([0, 1])$, show that B cannot be covered by a finite number of balls of radius r where r < 1.

4. Suppose that $f_n(x)$ is a decreasing sequence of upper semi-continuous function with pointwise limit f(x). Show that f(x) is upper semi-continuous.

5. If $\sum a_n$ is a divergent series of positive terms and s_n denotes its n^{th} partial sum, show that the series $\sum \frac{a_n}{s_n^2}$ converges.

Part B

1. Consider the sequence of functions $f_n(x) = \frac{ne^{x^2}}{1 + n^2 x^2}$. Compute $\lim_{n \to \infty} \int_0^1 f_n(x) dx$. Justify each of your steps carefully.

2. Suppose that $E \subset \mathbf{R}$ is Lebesgue measurable and that there is a real number α , $0 \leq \alpha < 1$ such that for any interval I, $\mu(E \cap I) \leq \alpha \mu(I)$ where μ is Lebesgue measure. Show that $\mu(E) = 0$.

3. Suppose that $\{f_n(x)\}$ is a sequence of real valued measurable functions of a real variable. Suppose that there is an integrable function g with $|f_n(x)| < g(x)$ for all n. Show that $\limsup \int f_n(x) dx \leq \int \limsup f_n(x) dx$.

4. Suppose that a sequence of real valued measurable function $\{f_n(x)\}$ converges in measure to a function f(x), and there is an integrable function g with $|f_n(x)| < g(x)$. Show $\{f_n(x)\}$ converges to f(x) in mean.

5. Let $\{f_n(x)\}$ be a sequence of real valued measurable functions. Show that the set where $\{f_n(x)\}$ converges is measurable.