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Instructions

Do any four problems. And no more than four.
Please make sure that you give complete solutions and full

explanations to each problem that you do.

Indicate which problems you wish to have graded.

You have three hours.

Policy on Misprints

The Ph.D. Qualifying Examination Committee tries to
proofread the exams as carefully as possible. Neverthe-
less, the exam may contain misprints. If you are con-
vinced a problem has been stated incorrectly, mention
this to the proctor and indicate your interpretation in
your solution. In such cases do not interpret the problem
in such a way that it becomes trivial.



1. For each of the following either give an example or else prove that no such example
is possible.

(a) A nonabelian group.

(b) A finite abelian group that is not cyclic.

(c) An infinite group with a subgroup of index 5.

(d) Two finite groups that have the same order but are not isomorphic.

(e) A group G with a subgroup H that is not normal.

(f) A nonabelian group with no normal subgroups except the whole group and
the unit element.

(g) A group G with a normal subgroup H such that the factor group G/H is not
isomorphic to any subgroup of G.

(h) A group G with a subgroup H which has index 2 but is not normal.

2. Let F ⊂ K be fields, and a and b elements of K which are algebraic over F. Show
that a + b is algebraic over F.

3. Let A denote the ideal in Z[x], the ring of polynomials with coefficients in Z,
generated by x3 + x + 1 and 5. Is A a prime ideal?

4. Let R be a principal ideal domain and let A and B be nonzero ideals in R. Show
that AB = A ∩B if and only if A + B = R.



5. Let Z2 be the group of lattice points in the plane (ordered pairs of integers, with
coordinatewise addition as the group operation). Let H1 be the subgroup generated
by the two elements (1, 2) and (4, 1), and let H2 the subgroup generated by the two
elements (3, 2) and (1, 3). Are the quotient groups G1 = Z2/H1 and G2 = Z2/H2

isomorphic?

6. Suppose that R is a subring of a commutative ring S and that R has finite index
n in S. Let m be an integer that is relatively prime to n. Prove that the natural
map R/mR → S/mS is a ring isomorphism.

7. Let p, q, r and s be polynomials of degree at most 3. Which, if any, of the following
two conditions is sufficient for the conclusion that the polynomials are linearly
dependent?

(a) At 1 each of the polynomials has the value 0.

(b) At 0 each of the polynomials has the value 1.

8. Are the matrices given below similar?

A =

 1 0 0
−1 1 1
−1 0 2

 and B =

1 1 0
0 1 0
0 0 2




