University of Toledo Algebra Ph.D. Qualifying Exam January 27, 2007

Instructions: The exam is divided into three sections. Please choose exactly three problems from each section. Clearly indicate which three you would like graded. You have three hours.

1. Section I

- (1) Let G be a group with exactly three subgroups (including the trivial subgroup and G itself).
 - (a) Prove that G is finite and cyclic.
 - (b) Prove that the order of G is p^2 for some prime p.
- (2) Let G be a non-abelian p-group of order p^3 , where p is a prime number. Let Z(G) be the center of G and G' be its commutator subgroup.
 - (a) Show that Z(G) = G' and that this is the unique normal subgroup of G of order p.
 - (b) Determine the number of distinct conjugacy classes of G.
- (3) Let G be a finite group having exactly n Sylow p-subgroups for some prime p. Show that there exists a subgroup H of the symmetric group S_n of degree n that also has exactly n Sylow p-subgroups.
- (4) Describe the isomorphism classes of groups of order 175 by giving a presentation of each with generators and relations.
- (5) Let G be a finite group of order pqr for primes p < q < r. Prove that G is solvable.

2. Section II

- (6) Prove or disprove: There exist two non-isomorphic rings, each with 9 elements, whose additive groups are isomorphic.
- (7) Let $f(x) = x^5 9x + 3 \in \mathbb{Q}[x]$. Determine the Galois group of f(x) over \mathbb{Q} . Hint: First use some basic calculus to prove that f(x) has exactly 3 real roots and two complex (not real) roots.
- (8) (a) Suppose that R is a commutative ring with identity. Prove that every maximal ideal of R is a prime ideal.
 - (b) Show that the ideal (3, x) of $\mathbb{Z}[x]$ generated by 3 and x is a maximal ideal of $\mathbb{Z}[x]$.
 - (c) Find a prime ideal of $\mathbb{Z}[x]$ that is *not* maximal.
- (9) Let K be the field obtained by adjoining to the rational numbers \mathbb{Q} all complex cube roots of 2.
 - (a) Determine the degree $|K : \mathbb{Q}|$.
 - (b) Determine the Galois group of the extension K/\mathbb{Q} .
 - (c) Determine all subfields of K.
- (10) Let α be a non-zero real number and suppose that $\alpha^n \in \mathbb{Q}$, the rational numbers, for some integer n. Let g(x) be the minimal (monic) polynomial of α over \mathbb{Q} and let deg g = m.
 - (a) Show that $g(0) = \pm \alpha^m$.
 - (b) Prove that $g(x) = x^m b$ for some $b \in \mathbb{Q}$.
 - (c) Show that m divides n.

3. Section III

- (11) Let A be an $n \times n$ matrix over a field K and assume that the characteristic polynomial of A has distinct roots in the algebraic closure of K. Prove that any two $n \times n$ matrices that commute with A must commute with each other.
- (12) Let V be a vector space over an algebraically closed field K and let $T: V \to V$ be a linear operator on V. Let $I: V \to V$ denote the identity operator. Show that V has a basis consisting of eigenvectors of T if and only if the kernel of $(\lambda I - T)^2$ is equal to the kernel of $\lambda I - T$ for all $\lambda \in K$.
- (13) Let $\mathbb{Z}[i]$ denote the Gaussian integers. Prove or disprove:

•

$$\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{C}$$

- (14) Let R be a commutative ring with 1 and let M be a left R-module. Prove that $\operatorname{Hom}_R(R, M)$ and M are isomorphic as left R-modules.
- (15) Suppose R is a ring and $f: M \to M$ is an R-module homomorphism such that f(f(m)) = f(m) for all $m \in M$. Prove: $M \cong \operatorname{Ker} f \oplus \operatorname{Im} f.$