Ph.D. QUALIFYING EXAM DIFFERENTIAL EQUATIONS Spring, 2008

Biao Ou and Henry Wente

This exam has two parts, ordinary differential equations and partial differential equations. Choose four problems from each part.

Part I: Ordinary Differential Equations

1. Consider the differential equation with initial condition

$$dx/dt = F(t, x), \ x(a) = x_0 \in \mathbb{R}^n$$

where $x(t) = (x_1(t), x_2(t), \dots, x_n(t))^T$ and $F(t, x) = (F_1(t, x), F_2(t, x), \dots, F_n(t, x))^T$. Suppose F(t, x) is continuous for $a \le t \le b$ and $x \in \mathbb{R}^n$ and satisfies a Lipschitz condition $|F(t, x) - F(t, y)| \le L|x - y|$ for $a \le t \le b$ and all x, y.

- (a) Convert the differential equation with the initial condition into an equivalent integral equation.
- (b) Set up the Picard iteration process and prove that the sequence converges uniformly on the interval [a, b] to a limit function $x_{\infty}(t)$.
 - (c) Show that $x_{\infty}(t)$ is a solution to the differential equation on [a, b].
- (d) Establish that the solution to the differential equation with the given initial condition is unique.
- 2. Let k(s) be a continuous function on [0,1]. Consider

$$\begin{cases} \frac{d^2x}{ds^2} = -k(s)\frac{dy}{ds}, & \frac{d^2y}{ds^2} = k(s)\frac{dx}{ds}; \\ x(0) = 0, & y(0) = 0, & x'(0) = 1, & y'(0) = 0. \end{cases}$$

- 1) Turn the problem into a system of first order linear differential equations with an initial condition.
 - 2) Show that $x'(s)^2 + y'(s)^2 = 1$ for all s in [0,1].
 - 3) Solve the system for the cases k(s) = 0, k(s) = -2 respectively.
- 3. Consider

$$\ddot{\theta} = -3\sin(\theta), \quad \theta(0) = \theta_0, \quad \dot{\theta}(0) = 0.$$

Show that the solution $\theta(t)$ is a periodic function if $0 < \theta_0 < \pi/2$. Find a formula for the period $T(\theta_0)$ and find the limits

$$\lim_{\theta_0 \to (\frac{\pi}{2})^-} T(\theta_0), \quad \lim_{\theta_0 \to 0^+} T(\theta_0).$$

4. Find all the eigenvalues and eigenfuntions of the Sturm-Liouville system

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(\pi) = 0$.

5. Solve the initial value problem.

$$\frac{d}{dt} \left(\begin{array}{c} x(t) \\ y(t) \end{array} \right) = \left(\begin{array}{c} 4 & 3 \\ 1 & 2 \end{array} \right) \left(\begin{array}{c} x(t) \\ y(t) \end{array} \right) + \left(\begin{array}{c} 2 \\ 3 \end{array} \right) e^t, \quad \left(\begin{array}{c} x(0) \\ y(0) \end{array} \right) = \left(\begin{array}{c} -1 \\ 2 \end{array} \right).$$

6. Give an example of the initial value problem y' = F(x, y), y(a) = c that has more than one solution.

Part II: Partial Differential Equations

1. (Dirichlet Problem on the Unit Disk) Let $f(\theta)$ be a continuous and 2π -periodic function with Fourier series

$$f(\theta) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta).$$

Let

$$u(r,\theta) = \frac{a_0}{2} + \sum_{k=1}^{\infty} r^k (a_k \cos k\theta + b_k \sin k\theta).$$

- (a) Prove that the series for $u(r, \theta)$ converges uniformly on any disk $B_R = \{(r, \theta) \mid 0 \le r \le R\}$ with R < 1.
 - (b) Show how to rewrite the series for $u(r,\theta)$ in the form

$$u(r,\theta) = \int_0^{2\pi} f(\phi)P(r,\theta - \phi)d\phi$$

where P is the Poisson kernel satisfying

$$P(r,\phi) = \frac{1}{2\pi} \frac{1 - r^2}{1 - 2r\cos\phi + r^2}.$$

- (c) Prove that $\lim_{r\to 1^-} u(r,\theta) = f(\theta)$ uniformly.
- 2. (Removable Singularity for Harmonic Functions) Suppose u(x,y) is a continuous harmonic function satisfying $|u(x,y)| \leq M$ for some constant M on the deleted unit disk $0 < \sqrt{x^2 + y^2} < 1$. Prove that the singularity at the origin is removable.
- 3. (Maximum Principle for the Heat Equation) Let

$$\Omega = \{(x, t) \mid x \in \omega, 0 < t < T\} \subset R^{n+1}$$

where ω is a bounded open set in \mathbb{R}^n . Set

$$\begin{array}{ll} \partial'\Omega & = & \{(x,t) \mid x \in \partial \omega, 0 \leq t \leq T \\ & \text{or } x \in \omega, t = 0\} \end{array}$$

Let $u \in C^0(\bar{\Omega}) \cap C^2(\Omega)$ satisfy $u_t - \Delta u \leq 0$ in Ω . Prove that

$$\max_{\bar{\Omega}} u = \max_{\partial' \Omega} u.$$

4. (Harnack's Inequality) Let u(x,y) be a positive continuous harmonic function on the disk

$$B_a = \{(x, y) \mid x^2 + y^2 \le a^2\}.$$

(a) Prove the Harnack Inequality

$$\frac{a-r}{a+r}u(0,0) \le u(x,y) \le \frac{a+r}{a-r}u(0,0)$$

where $r = \sqrt{x^2 + y^2} < a$.

- (b) Show that if u(x, y) is a positive continuous harmonic function on \mathbb{R}^2 then u(x, y) is a constant function.
- 5. Derive the complete solution to the one-dimensional wave equation $u_{tt} = c^2 u_{xx}$ on $-\infty < x < \infty, t > 0$ with the initial conditions

$$u(x,0) = f(x)$$
 $u_t(x,0) = g(x)$.

- **6.** Consider the eikonal equation $u_x^2 + u_y^2 = u^2$.
 - (a) Find all solutions of the form u(x, y) = f(x).
- (b) Use (a) to write down a general solution u = u(x, y, a, b). (Hint: Use the fact that the PDE is invariant under rotations in the xy plane.)
 - (c) Find the solution of the PDE satisfying the condition u(x, x) = 3x.