Ph.D. Qualifying Exam

Authored by Rao Nagisetty and Denis White

January 19, 2008

Instructions: Do any six of the nine complete questions. No materials.

1. Suppose that $f,g \in L^1(\mathbb{R},m)$ where m denotes the Lebesgue measure and, for every a < b

$$\int_{a}^{b} f dm \ge \int_{a}^{b} g dm.$$

Show that *m*-almost everywhere, $f \geq g$.

2. Suppose that $g \in C([a,b])$ and $K \in C([a,b] \times [a,b])$. For each $u \in L^1([a,b],m)$ (*m* denotes Lebesgue measure on [a,b]) define

$$Tu(x) = g(x) + \int_a^b K(x, y)u(y) \, dm(y).$$

- (a) Show that $Tu \in C([a, b])$.
- (b) Show that $\{Tu : ||u||_1 \le 1\}$ is compact in C([a, b]). (Here $|| \cdot ||_1$ is the $L^1([a, b], m)$ norm.
- 3. (a) State the Stone Weierstrass Theorem.
 - (b) Suppose that $f \in C(0,\pi)$ and $\int_0^{\pi} f(x) \cos nx \, dx = 0$ for all n. Show that f(x) = 0 for all $x, 0 < x < \pi$. (Suggestion: The trigonometric identity $2 \cos A \cos B = \cos(A + B) + \cos(A - B)$ may be useful.)
- 4. Let $f_n(x) = n(\sin x)^n \cos x$.
 - (a) Show that the sequence of functions f_n converges to 0 uniformly on any interval of the form [0, a] where $a < \pi/2$.
 - (b) Does f_n converge to 0 uniformly on $[0, \pi/2]$?
 - (c) Show that, for any continuous function $g \in C([0, \pi/2])$

$$\lim_{n \to \infty} \int_0^{\pi/2} f_n(x) g(x) \, dx = g(\pi/2).$$

- 5. Prove or disprove each of the following three statements.
 - (a) If $a_n \ge 0$ is a sequence of nonnegative real numbers and $\sum_{n=1}^{\infty} a_n$ exists then $\sum_{n=1}^{\infty} a_n^2$ exists.
 - (b) If a_n is a sequence of real numbers and $\sum_n^{\infty} a_n$ exists then $\sum_n^{\infty} a_n^2$ exists.
 - (c) If a_n is a sequence of real numbers and $\lim_{n\to\infty} a_n = 0$ and the partial sums $s_k = \sum_{n=1}^k a_n$ are uniformly bounded, then $\sum_{n=1}^\infty a_n$ exists.
- 6. (a) Define the sets of first and second categories in topological space and state Baire category theorem.
 - (b) Show that the set of all transcendental numbers in the interval [0,1] is a set of second category in [0, 1]. [A number that is a solution of a polynomial equation with integer coefficients is called an algebraic number, for example $\sqrt{2}$. All others are called transcendental, for example e, π etc. are transcendental.

7. Define
$$f(x) = \frac{1 - \cos x}{x}$$
 for $x > 0$.

- (a) Show that $f \notin L^1(0,\infty)$.
- (b) Show that the improper Riemann integral R- $\int_{1}^{\infty} \frac{\cos x}{x} dx$ exists.
- 8. Define the convergence of the infinite product $\prod_{n=1}^{\infty} (1 + a_n)$.
 - (a) Prove that $\Pi_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)$ diverges. (b) $\Pi_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right)$ converges.

- 9. Prove or disprove each of the following statements.
 - (a) If $f_n \in L^1(\mu), f_n \ge 0$ for $n \in \mathbb{N}$ and $\{f_n\}$ converges pointwise to $f \in L^1(\mu)$ as $n \to \infty$, then

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

- (b) f is measurable if and only if |f| is measurable.
- (c) Let C be the middle-third Cantor set. Then the Lebesgue measure of C is zero and the characteristic function of C is Riemann integrable.